Visible to the public Biblio

Filters: Keyword is policymakers  [Clear All Filters]
2019-03-04
Herald, N. E., David, M. W..  2018.  A Framework for Making Effective Responses to Cyberattacks. 2018 IEEE International Conference on Big Data (Big Data). :4798–4805.
The process for determining how to respond to a cyberattack involves evaluating many factors, including some with competing risks. Consequentially, decision makers in the private sector and policymakers in the U.S. government (USG) need a framework in order to make effective response decisions. The authors' research identified two competing risks: 1) the risk of not responding forcefully enough to deter a suspected attacker, and 2) responding in a manner that escalates a situation with an attacker. The authors also identified three primary factors that influence these risks: attribution confidence/time, the scale of the attack, and the relationship with the suspected attacker. This paper provides a framework to help decision makers understand how these factors interact to influence the risks associated with potential response options to cyberattacks. The views expressed do not reflect the official policy or position of the National Intelligence University, the Department of Defense, the U.S. Intelligence Community, or the U.S. Government.
2019-02-08
Isaacson, D. M..  2018.  The ODNI-OUSD(I) Xpress Challenge: An Experimental Application of Artificial Intelligence Techniques to National Security Decision Support. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). :104-109.
Current methods for producing and disseminating analytic products contribute to the latency of relaying actionable information and analysis to the U.S. Intelligence Community's (IC's) principal customers, U.S. policymakers and warfighters. To circumvent these methods, which can often serve as a bottleneck, we report on the results of a public prize challenge that explored the potential for artificial intelligence techniques to generate useful analytic products. The challenge tasked solvers to develop algorithms capable of searching and processing nearly 15,000 unstructured text files into a 1-2 page analytic product without human intervention; these analytic products were subsequently evaluated and scored using established IC methodologies and criteria. Experimental results from this challenge demonstrate the promise for the ma-chine generation of analytic products to ensure that the IC warns and informs in a more timely fashion.