Biblio
The signcryption technique was first proposed by Y. Zheng, where two cryptographic operations digital signature and message encryption are made combinedly. We cryptanalyze the technique and observe that the signature and encryption become vulnerable if the forged public keys are used. This paper proposes an improvement using modified DSS (Digital Signature Standard) version of ElGamal signature and DHP (Diffie-Hellman key exchange protocol), and shows that the vulnerabilities in both the signature and encryption methods used in Zheng's signcryption are circumvented. DHP is used for session symmetric key establishment and it is combined with the signature in such a way that the vulnerabilities of DHP can be avoided. The security and performance analysis of our signcryption technique are provided and found that our scheme is secure and designed using minimum possible operations with comparable computation cost of Zheng's scheme.
Public key cryptography or asymmetric keys are widely used in the implementation of data security on information and communication systems. The RSA algorithm (Rivest, Shamir, and Adleman) is one of the most popular and widely used public key cryptography because of its less complexity. RSA has two main functions namely the process of encryption and decryption process. Digital Signature Algorithm (DSA) is a digital signature algorithm that serves as the standard of Digital Signature Standard (DSS). DSA is also included in the public key cryptography system. DSA has two main functions of creating digital signatures and checking the validity of digital signatures. In this paper, the authors compare the computational times of RSA and DSA with some bits and choose which bits are better used. Then combine both RSA and DSA algorithms to improve data security. From the simulation results, the authors chose RSA 1024 for the encryption process and added digital signatures using DSA 512, so the messages sent are not only encrypted but also have digital signatures for the data authentication process.