Visible to the public Biblio

Filters: Keyword is reinforcement learning approach  [Clear All Filters]
2020-04-13
Phan, Trung V., Islam, Syed Tasnimul, Nguyen, Tri Gia, Bauschert, Thomas.  2019.  Q-DATA: Enhanced Traffic Flow Monitoring in Software-Defined Networks applying Q-learning. 2019 15th International Conference on Network and Service Management (CNSM). :1–9.
Software-Defined Networking (SDN) introduces a centralized network control and management by separating the data plane from the control plane which facilitates traffic flow monitoring, security analysis and policy formulation. However, it is challenging to choose a proper degree of traffic flow handling granularity while proactively protecting forwarding devices from getting overloaded. In this paper, we propose a novel traffic flow matching control framework called Q-DATA that applies reinforcement learning in order to enhance the traffic flow monitoring performance in SDN based networks and prevent traffic forwarding performance degradation. We first describe and analyse an SDN-based traffic flow matching control system that applies a reinforcement learning approach based on Q-learning algorithm in order to maximize the traffic flow granularity. It also considers the forwarding performance status of the SDN switches derived from a Support Vector Machine based algorithm. Next, we outline the Q-DATA framework that incorporates the optimal traffic flow matching policy derived from the traffic flow matching control system to efficiently provide the most detailed traffic flow information that other mechanisms require. Our novel approach is realized as a REST SDN application and evaluated in an SDN environment. Through comprehensive experiments, the results show that-compared to the default behavior of common SDN controllers and to our previous DATA mechanism-the new Q-DATA framework yields a remarkable improvement in terms of traffic forwarding performance degradation protection of SDN switches while still providing the most detailed traffic flow information on demand.
2019-02-08
Yousefi, M., Mtetwa, N., Zhang, Y., Tianfield, H..  2018.  A Reinforcement Learning Approach for Attack Graph Analysis. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :212-217.

Attack graph approach is a common tool for the analysis of network security. However, analysis of attack graphs could be complicated and difficult depending on the attack graph size. This paper presents an approximate analysis approach for attack graphs based on Q-learning. First, we employ multi-host multi-stage vulnerability analysis (MulVAL) to generate an attack graph for a given network topology. Then we refine the attack graph and generate a simplified graph called a transition graph. Next, we use a Q-learning model to find possible attack routes that an attacker could use to compromise the security of the network. Finally, we evaluate the approach by applying it to a typical IT network scenario with specific services, network configurations, and vulnerabilities.