Visible to the public Biblio

Filters: Keyword is revoked users  [Clear All Filters]
2019-02-13
Yasumura, Y., Imabayashi, H., Yamana, H..  2018.  Attribute-based proxy re-encryption method for revocation in cloud storage: Reduction of communication cost at re-encryption. 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA). :312–318.
In recent years, many users have uploaded data to the cloud for easy storage and sharing with other users. At the same time, security and privacy concerns for the data are growing. Attribute-based encryption (ABE) enables both data security and access control by defining users with attributes so that only those users who have matching attributes can decrypt them. For real-world applications of ABE, revocation of users or their attributes is necessary so that revoked users can no longer decrypt the data. In actual implementations, ABE is used in hybrid with a symmetric encryption scheme such as the advanced encryption standard (AES) where data is encrypted with AES and the AES key is encrypted with ABE. The hybrid encryption scheme requires re-encryption of the data upon revocation to ensure that the revoked users can no longer decrypt that data. To re-encrypt the data, the data owner (DO) must download the data from the cloud, then decrypt, encrypt, and upload the data back to the cloud, resulting in both huge communication costs and computational burden on the DO depending on the size of the data to be re-encrypted. In this paper, we propose an attribute-based proxy re-encryption method in which data can be re-encrypted in the cloud without downloading any data by adopting both ABE and Syalim's encryption scheme. Our proposed scheme reduces the communication cost between the DO and cloud storage. Experimental results show that the proposed method reduces the communication cost by as much as one quarter compared to that of the trivial solution.
2019-02-08
Cui, S., Asghar, M. R., Russello, G..  2018.  Towards Blockchain-Based Scalable and Trustworthy File Sharing. 2018 27th International Conference on Computer Communication and Networks (ICCCN). :1-2.

In blockchain-based systems, malicious behaviour can be detected using auditable information in transactions managed by distributed ledgers. Besides cryptocurrency, blockchain technology has recently been used for other applications, such as file storage. However, most of existing blockchain- based file storage systems can not revoke a user efficiently when multiple users have access to the same file that is encrypted. Actually, they need to update file encryption keys and distribute new keys to remaining users, which significantly increases computation and bandwidth overheads. In this work, we propose a blockchain and proxy re-encryption based design for encrypted file sharing that brings a distributed access control and data management. By combining blockchain with proxy re-encryption, our approach not only ensures confidentiality and integrity of files, but also provides a scalable key management mechanism for file sharing among multiple users. Moreover, by storing encrypted files and related keys in a distributed way, our method can resist collusion attacks between revoked users and distributed proxies.