Visible to the public Biblio

Filters: Keyword is Linear Secret Sharing  [Clear All Filters]
2022-01-25
Fan, Chun-I, Tseng, Yi-Fan, Feng, Cheng-Chun.  2021.  CCA-Secure Attribute-Based Encryption Supporting Dynamic Membership in the Standard Model. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Attribute-based encryption (ABE) is an access control mechanism where a sender encrypts messages according to an attribute set for multiple receivers. With fine-grained access control, it has been widely applied to cloud storage and file sharing systems. In such a mechanism, it is a challenge to achieve the revocation efficiently on a specific user since different users may share common attributes. Thus, dynamic membership is a critical issue to discuss. On the other hand, most works on LSSS-based ABE do not address the situation about threshold on the access structure, and it lowers the diversity of access policies. This manuscript presents an efficient attribute-based encryption scheme with dynamic membership by using LSSS. The proposed scheme can implement threshold gates in the access structure. Furthermore, it is the first ABE supporting complete dynamic membership that achieves the CCA security in the standard model, i.e. without the assumption of random oracles.
2019-02-13
Phuong, T. V. Xuan, Ning, R., Xin, C., Wu, H..  2018.  Puncturable Attribute-Based Encryption for Secure Data Delivery in Internet of Things. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :1511–1519.
While the Internet of Things (IoT) is embraced as important tools for efficiency and productivity, it is becoming an increasingly attractive target for cybercriminals. This work represents the first endeavor to develop practical Puncturable Attribute Based Encryption schemes that are light-weight and applicable in IoTs. In the proposed scheme, the attribute-based encryption is adopted for fine grained access control. The secret keys are puncturable to revoke the decryption capability for selected messages, recipients, or time periods, thus protecting selected important messages even if the current key is compromised. In contrast to conventional forward encryption, a distinguishing merit of the proposed approach is that the recipients can update their keys by themselves without key re-issuing from the key distributor. It does not require frequent communications between IoT devices and the key distribution center, neither does it need deleting components to expunge existing keys to produce a new key. Moreover, we devise a novel approach which efficiently integrates attribute-based key and punctured keys such that the key size is roughly the same as that of the original attribute-based encryption. We prove the correctness of the proposed scheme and its security under the Decisional Bilinear Diffie-Hellman (DBDH) assumption. We also implement the proposed scheme on Raspberry Pi and observe that the computation efficiency of the proposed approach is comparable to the original attribute-based encryption. Both encryption and decryption can be completed within tens of milliseconds.