Visible to the public Biblio

Filters: Keyword is Domain Specific Languages  [Clear All Filters]
2021-04-27
Gui, J., Li, D., Chen, Z., Rhee, J., Xiao, X., Zhang, M., Jee, K., Li, Z., Chen, H..  2020.  APTrace: A Responsive System for Agile Enterprise Level Causality Analysis. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :1701–1712.
While backtracking analysis has been successful in assisting the investigation of complex security attacks, it faces a critical dependency explosion problem. To address this problem, security analysts currently need to tune backtracking analysis manually with different case-specific heuristics. However, existing systems fail to fulfill two important system requirements to achieve effective backtracking analysis. First, there need flexible abstractions to express various types of heuristics. Second, the system needs to be responsive in providing updates so that the progress of backtracking analysis can be frequently inspected, which typically involves multiple rounds of manual tuning. In this paper, we propose a novel system, APTrace, to meet both of the above requirements. As we demonstrate in the evaluation, security analysts can effectively express heuristics to reduce more than 99.5% of irrelevant events in the backtracking analysis of real-world attack cases. To improve the responsiveness of backtracking analysis, we present a novel execution-window partitioning algorithm that significantly reduces the waiting time between two consecutive updates (especially, 57 times reduction for the top 1% waiting time).
2019-02-14
Zhang, Feng, Zhai, Jidong, Shen, Xipeng, Mutlu, Onur, Chen, Wenguang.  2018.  Zwift: A Programming Framework for High Performance Text Analytics on Compressed Data. Proceedings of the 2018 International Conference on Supercomputing. :195-206.
Today's rapidly growing document volumes pose pressing challenges to modern document analytics frameworks, in both space usage and processing time. Recently, a promising method, called text analytics directly on compressed data (TADOC), was proposed for improving both the time and space efficiency of text analytics. The main idea of the technique is to enable direct document analytics on compressed data. This paper focuses on the programming challenges for developing efficient TADOC programs. It presents Zwift, the first programming framework for TADOC, which consists of a Domain Specific Language, a compiler and runtime, and a utility library. Experiments show that Zwift significantly improves programming productivity, while effectively unleashing the power of TADOC, producing code that reduces storage usage by 90.8% and execution time by 41.0% on six text analytics problems.