Biblio
Objective measures are ubiquitous in the formulation, design and implementation of deep space missions. Tour durations, flyby altitudes, propellant budgets, power consumption, and other metrics are essential to developing and managing NASA missions. But beyond the simple metrics of cost and workforce, it has been difficult to identify objective, quantitative measures that assist in evaluating choices made during formulation or implementation phases in terms of their impact on flight operations. As part of the development of the Europa Clipper Mission system, a set of operations metrics have been defined along with the necessary design information and software tooling to calculate them. We have applied these methods and metrics to help assess the impact to the flight team on the six options for the Clipper Tour that are currently being vetted for selection in the fall of 2021. To generate these metrics, the Clipper MOS team first designed the set of essential processes by which flight operations will be conducted, using a standard approach and template to identify (among other aspects) timelines for each process, along with their time constraints (e.g., uplinks for sequence execution). Each of the resulting 50 processes is documented in a common format and concurred by stakeholders. Process timelines were converted into generic schedules and workforce-loaded using COTS scheduling software, based on the inputs of the process authors and domain experts. Custom code was generated to create an operations schedule for a specific portion of Clipper's prime mission, with instances of a given process scheduled based on specific timing rules (e.g., process X starts once per week on Thursdays) or relative to mission events (e.g., sequence generation process begins on a Monday, at least three weeks before each Europa closest approach). Over a 5-month period, and for each of six Clipper candidate tours, the result was a 20,000+ line, workforce-loaded schedule that documents all of the process-driven work effort at the level of individual roles, along with a significant portion of the level-of-effort work. Post-processing code calculated the absolute and relative number of work hours during a nominal 5 day / 40 hour work week, the work effort during 2nd and 3rd shift, as well as 1st shift on weekends. The resultant schedules and shift tables were used to generate objective measures that can be related to both human factors and to operational risk and showed that Clipper tours which utilize 6:1 resonant (21.25 day) orbits instead of 4:1 resonant (14.17 day) orbits during the first dozen or so Europa flybys are advantageous to flight operations. A similar approach can be extended to assist missions in more objective assessments of a number of mission issues and trades, including tour selection and spacecraft design for operability.
This paper presents a new fractional-order hidden strange attractor generated by a chaotic system without equilibria. The proposed non-equilibrium fractional-order chaotic system (FOCS) is asymmetric, dissimilar, topologically inequivalent to typical chaotic systems and challenges the conventional notion that the presence of unstable equilibria is mandatory to ensure the existence of chaos. The new fractional-order model displays rich bifurcation undergoing a period doubling route to chaos, where the fractional order α is the bifurcation parameter. Study of the hidden attractor dynamics is carried out with the aid of phase portraits, sensitivity to initial conditions, fractal Lyapunov dimension, maximum Lyapunov exponents spectrum and bifurcation analysis. The minimum commensurate dimension to display chaos is determined. With a view to utilizing it in chaos based cryptology and coding information, a synchronisation control scheme is designed. Finally the theoretical analyses are validated by numerical simulation results which are in good agreement with the former.
Traditionally, the focus of security and ensuring confidentiality, integrity, and availability of data in spacecraft systems has been on the ground segment and the uplink/downlink components. Although these are the most obvious attack vectors, potential security risks against the satellite's platform is also a serious concern. This paper discusses a notional satellite architecture and explores security vulnerabilities using a systems-level approach. Viewing attacks through this paradigm highlights several potential attack vectors that conventional satellite security approaches fail to consider. If left undetected, these could yield physical effects limiting the satellite's mission or performance. The approach presented aids in risk analysis and gives insight into architectural design considerations which improve the system's overall resiliency.
While many theoretical and simulation works have highlighted the potential gains of cognitive radio, several technical issues still need to be evaluated from an experimental point of view. Deploying complex heterogeneous system scenarios is tedious, time consuming and hardly reproducible. To address this problem, we have developed a new experimental facility, called CorteXlab, that allows complex multi-node cognitive radio scenarios to be easily deployed and tested by anyone in the world. Our objective is not to design new software defined radio (SDR) nodes, but rather to provide a comprehensive access to a large set of high performance SDR nodes. The CorteXlab facility offers a 167 m2 electromagnetically (EM) shielded room and integrates a set of 24 universal software radio peripherals (USRPs) from National Instruments, 18 PicoSDR nodes from Nutaq and 42 IoT-Lab wireless sensor nodes from Hikob. CorteXlab is built upon the foundations of the SensLAB testbed and is based the free and open-source toolkit GNU Radio. Automation in scenario deployment, experiment start, stop and results collection is performed by an experiment controller, called Minus. CorteXlab is in its final stages of development and is already capable of running test scenarios. In this contribution, we show that CorteXlab is able to easily cope with the usual issues faced by other testbeds providing a reproducible experiment environment for CR experimentation.