Visible to the public Biblio

Filters: Keyword is SG  [Clear All Filters]
2020-03-16
Radoglou-Grammatikis, Panagiotis, Sarigiannidis, Panagiotis, Giannoulakis, Ioannis, Kafetzakis, Emmanouil, Panaousis, Emmanouil.  2019.  Attacking IEC-60870-5-104 SCADA Systems. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:41–46.
The rapid evolution of the Information and Communications Technology (ICT) services transforms the conventional electrical grid into a new paradigm called Smart Grid (SG). Even though SG brings significant improvements, such as increased reliability and better energy management, it also introduces multiple security challenges. One of the main reasons for this is that SG combines a wide range of heterogeneous technologies, including Internet of Things (IoT) devices as well as Supervisory Control and Data Acquisition (SCADA) systems. The latter are responsible for monitoring and controlling the automatic procedures of energy transmission and distribution. Nevertheless, the presence of these systems introduces multiple vulnerabilities because their protocols do not implement essential security mechanisms such as authentication and access control. In this paper, we focus our attention on the security issues of the IEC 60870-5-104 (IEC-104) protocol, which is widely utilized in the European energy sector. In particular, we provide a SCADA threat model based on a Coloured Petri Net (CPN) and emulate four different types of cyber attacks against IEC-104. Last, we used AlienVault's risk assessment model to evaluate the risk level that each of these cyber attacks introduces to our system to confirm our intuition about their severity.
2019-02-14
Kelkar, S., Kraus, T., Morgan, D., Zhang, J., Dai, R..  2018.  Analyzing HTTP-Based Information Exfiltration of Malicious Android Applications. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1642-1645.

Exfiltrating sensitive information from smartphones has become one of the most significant security threats. We have built a system to identify HTTP-based information exfiltration of malicious Android applications. In this paper, we discuss the method to track the propagation of sensitive information in Android applications using static taint analysis. We have studied the leaked information, destinations to which information is exfiltrated, and their correlations with types of sensitive information. The analysis results based on 578 malicious Android applications have revealed that a significant portion of these applications are interested in identity-related sensitive information. The vast majority of malicious applications leak multiple types of sensitive information. We have also identified servers associated with three country codes including CN, US, and SG are most active in collecting sensitive information. The analysis results have also demonstrated that a wide range of non-default ports are used by suspicious URLs.