Visible to the public Biblio

Filters: Keyword is digraph  [Clear All Filters]
2021-10-04
Karelova, O.L., Golosov, P.E..  2020.  Digraph Modeling of Information Security Systems. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1–4.
When modeling information security systems (ISS), the vast majority of works offer various models of threats to the object of protection (threat trees, Petri nets, etc.). However, ISS is not only a mean to prevent threats or reduce damage from their implementation, but also other components - the qualifications of employees responsible for IS, the internal climate in the team, the company's position on the market, and many others. The article considers the cognitive model of the state of the information security system of an average organization. The model is a weighted oriented graph, its' vertices are standard elements of the organization's information security system. The most significant factors affecting the condition of information security of the organization are identified based on the model. Influencing these factors is providing the most effect if IS level.
2020-01-28
Ayotte, Blaine, Banavar, Mahesh K., Hou, Daqing, Schuckers, Stephanie.  2019.  Fast and Accurate Continuous User Authentication by Fusion of Instance-Based, Free-Text Keystroke Dynamics. 2019 International Conference of the Biometrics Special Interest Group (BIOSIG). :1–6.

Keystroke dynamics study the way in which users input text via their keyboards, which is unique to each individual, and can form a component of a behavioral biometric system to improve existing account security. Keystroke dynamics systems on free-text data use n-graphs that measure the timing between consecutive keystrokes to distinguish between users. Many algorithms require 500, 1,000, or more keystrokes to achieve EERs of below 10%. In this paper, we propose an instance-based graph comparison algorithm to reduce the number of keystrokes required to authenticate users. Commonly used features such as monographs and digraphs are investigated. Feature importance is determined and used to construct a fused classifier. Detection error tradeoff (DET) curves are produced with different numbers of keystrokes. The fused classifier outperforms the state-of-the-art with EERs of 7.9%, 5.7%, 3.4%, and 2.7% for test samples of 50, 100, 200, and 500 keystrokes.

2019-02-14
Zhang, S., Wolthusen, S. D..  2018.  Efficient Control Recovery for Resilient Control Systems. 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). :1-6.

Resilient control systems should efficiently restore control into physical systems not only after the sabotage of themselves, but also after breaking physical systems. To enhance resilience of control systems, given an originally minimal-input controlled linear-time invariant(LTI) physical system, we address the problem of efficient control recovery into it after removing a known system vertex by finding the minimum number of inputs. According to the minimum input theorem, given a digraph embedded into LTI model and involving a precomputed maximum matching, this problem is modeled into recovering controllability of it after removing a known network vertex. Then, we recover controllability of the residual network by efficiently finding a maximum matching rather than recomputation. As a result, except for precomputing a maximum matching and the following removed vertex, the worst-case execution time of control recovery into the residual LTI physical system is linear.