Biblio
Filters: Keyword is missing data [Clear All Filters]
Data Imputation Techniques: An Empirical Study using Chronic Kidney Disease and Life Expectancy Datasets. 2022 International Conference on Innovative Trends in Information Technology (ICITIIT). :1—7.
.
2022. Data is a collection of information from the activities of the real world. The file in which such data is stored after transforming into a form that machines can process is generally known as data set. In the real world, many data sets are not complete, and they contain various types of noise. Missing values is of one such kind. Thus, imputing data of these missing values is one of the significant task of data pre-processing. This paper deals with two real time health care data sets namely life expectancy (LE) dataset and chronic kidney disease (CKD) dataset, which are very different in their nature. This paper provides insights on various data imputation techniques to fill missing values by analyzing them. When coming to Data imputation, it is very common to impute the missing values with measure of central tendencies like mean, median, mode Which can represent the central value of distribution but choosing the apt choice is real challenge. In accordance with best of our knowledge this is the first and foremost paper which provides the complete analysis of impact of basic data imputation techniques on various data distributions which can be classified based on the size of data set, number of missing values, type of data (categorical/numerical), etc. This paper compared and analyzed the original data distribution with the data distribution after each imputation in terms of their skewness, outliers and by various descriptive statistic parameters.
A Novel Support Vector Machine Algorithm for Missing Data. Proceedings of the 2Nd International Conference on Innovation in Artificial Intelligence. :48–53.
.
2018. Missing data problem often occurs in data analysis. The most common way to solve this problem is imputation. But imputation methods are only suitable for dealing with a low proportion of missing data, when assuming that missing data satisfies MCAR (Missing Completely at Random) or MAR (Missing at Random). In this paper, considering the reasons for missing data, we propose a novel support vector machine method using a new kernel function to solve the problem with a relatively large proportion of missing data. This method makes full use of observed data to reduce the error caused by filling a large number of missing values. We validate our method on 4 data sets from UCI Repository of Machine Learning. The accuracy, F-score, Kappa statistics and recall are used to evaluate the performance. Experimental results show that our method achieve significant improvement in terms of classification results compared with common imputation methods, even when the proportion of missing data is high.