Visible to the public Biblio

Filters: Keyword is pairing  [Clear All Filters]
2020-09-04
Pallavi, Sode, Narayanan, V Anantha.  2019.  An Overview of Practical Attacks on BLE Based IOT Devices and Their Security. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :694—698.
BLE is used to transmit and receive data between sensors and devices. Most of the IOT devices employ BLE for wireless communication because it suits their requirements such as less energy constraints. The major security vulnerabilities in BLE protocol can be used by attacker to perform MITM attacks and hence violating confidentiality and integrity of data. Although BLE 4.2 prevents most of the attacks by employing elliptic-curve diffie-Hellman to generate LTK and encrypt the data, still there are many devices in the market that are using BLE 4.0, 4.1 which are vulnerable to attacks. This paper shows the simple demonstration of possible attacks on BLE devices that use various existing tools to perform spoofing, MITM and firmware attacks. We also discussed the security, privacy and its importance in BLE devices.
2019-02-18
Sengupta, Jayasree, Ruj, Sushmita, Das Bit, Sipra.  2018.  An Efficient and Secure Directed Diffusion in Industrial Wireless Sensor Networks. Proceedings of the 1st International Workshop on Future Industrial Communication Networks. :41–46.
Industrial Wireless Sensor Networks (IWSNs) are an extension of the Internet of Things paradigm that integrates smart sensors in industrial processes. However, the unattended open environment makes IWSNs vulnerable to malicious attacks, such as node compromise in addition to eavesdropping. The compromised nodes can again launch notorious attacks such as the sinkhole or sybil attack which may degrade the network performance. In this paper, we propose a lightweight, Secure Directed Diffusion (SDD) protocol. The algorithm for the proposed protocol uses bilinear pairing to derive a location-based key (LK) by binding the ID and geographic location of a node, thereby ensuring neighborhood authentication. Thus, authenticated nodes can prevent eavesdropping, node compromise including sinkhole and sybil attacks while ensuring confidentiality, authenticity, integrity with reduced latency. Finally, through security analysis, we prove that basic security is maintained and above-mentioned attacks are also prevented. We also compute storage, computation and communication overheads which show that SDD performs at least 2.6 times better in terms of storage overhead and at least 1.3 times better in terms of communication overhead over the other state-of-the-art competing schemes for attack preventions in WSN domain.