Visible to the public Biblio

Filters: Keyword is Biosensors  [Clear All Filters]
2021-06-01
G., Sowmya Padukone, H., Uma Devi.  2020.  Optical Signal Confinement in an optical Sensor for Efficient Biological Analysis by HQF Achievement. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :7—12.
In this paper, a closely packed Biosensor construction by using a two-dimensional structure is described. This structure uses air-holes slab constructed on silicon material. By removing certain air holes in the slab, waveguides are constructed. By carrying out simulation, it is proved that the harmonic guided wave changes to lengthier wavelengths with reagents, pesticides, proteins & DNA capturing. A Biosensor is constructed with an improved Quality factor & wavelength. This gives high Quality Factor (HQF) resolution Biosensor. The approach used for Simulation purpose is Finite Difference Time Domain(FDTD).
2021-03-09
Seymen, B., Altop, D. K., Levi, A..  2020.  Augmented Randomness for Secure Key Agreement using Physiological Signals. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

With the help of technological advancements in the last decade, it has become much easier to extensively and remotely observe medical conditions of the patients through wearable biosensors that act as connected nodes on Body Area Networks (BANs). Sensitive nature of the critical data captured and communicated via wireless medium makes it extremely important to process it as securely as possible. In this regard, lightweight security mechanisms are needed to overcome the hardware resource restrictions of biosensors. Random and secure cryptographic key generation and agreement among the biosensors take place at the core of these security mechanisms. In this paper, we propose the SKA-PSAR (Augmented Randomness for Secure Key Agreement using Physiological Signals) system to produce highly random cryptographic keys for the biosensors to secure communication in BANs. Similar to its predecessor SKA-PS protocol by Karaoglan Altop et al., SKA-PSAR also employs physiological signals, such as heart rate and blood pressure, as inputs for the keys and utilizes the set reconciliation mechanism as basic building block. Novel quantization and binarization methods of the proposed SKA-PSAR system distinguish it from SKA-PS by increasing the randomness of the generated keys. Additionally, SKA-PSAR generated cryptographic keys have distinctive and time variant characteristics as well as long enough bit sizes that provides resistance against cryptographic attacks. Moreover, correct key generation rate is above 98% with respect to most of the system parameters, and false key generation rate of 0% have been obtained for all system parameters.

2019-12-16
DiPaola, Steve, Yalçin, Özge Nilay.  2019.  A multi-layer artificial intelligence and sensing based affective conversational embodied agent. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). :91–92.

Building natural and conversational virtual humans is a task of formidable complexity. We believe that, especially when building agents that affectively interact with biological humans in real-time, a cognitive science-based, multilayered sensing and artificial intelligence (AI) systems approach is needed. For this demo, we show a working version (through human interaction with it) our modular system of natural, conversation 3D virtual human using AI or sensing layers. These including sensing the human user via facial emotion recognition, voice stress, semantic meaning of the words, eye gaze, heart rate, and galvanic skin response. These inputs are combined with AI sensing and recognition of the environment using deep learning natural language captioning or dense captioning. These are all processed by our AI avatar system allowing for an affective and empathetic conversation using an NLP topic-based dialogue capable of using facial expressions, gestures, breath, eye gaze and voice language-based two-way back and forth conversations with a sensed human. Our lab has been building these systems in stages over the years.

2019-02-18
Singh, S., Saini, H. S..  2018.  Security approaches for data aggregation in Wireless Sensor Networks against Sybil Attack. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :190–193.
A wireless sensor network consists of many important elements like Sensors, Bass station and User. A Sensor can measure many non electrical quantities like pressure, temperature, sound, etc and transmit this information to the base station by using internal transreceiver. A security of this transmitted data is very important as the data may contain important information. As wireless sensor network have many application in the military and civil domains so security of wireless sensor network become a critical concern. A Sybil attack is one of critical attack which can affect the routing protocols, fair resourse allocation, data aggregation and misbehavior detection parameters of network. A number of detection techniques to detect Sybil nodes have already designed to overcome the Sybil attack. Out of all the techniques few techniques which can improve the true detection rate and reduce false detection rate are discussed in this paper.