Visible to the public Biblio

Filters: Keyword is roadside unit  [Clear All Filters]
2020-08-03
Shu-fen, NIU, Bo-bin, WANG, You-chen, WANG, Jin-feng, WANG, Jing-min, CHEN.  2019.  Efficient and Secure Proxy re-signature Message Authentication Scheme in Vehicular Ad Hoc Network. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). :1652–1656.

In order to solve privacy protection problem in the Internet of Vehicles environment, a message authentication scheme based on proxy re-signature is proposed using elliptic curves, which realizes privacy protection by transforming the vehicle's signature of the message into the roadside unit's signature of the same message through the trusted center. And through the trusted center traceability, to achieve the condition of privacy protection, and the use of batch verification technology, greatly improve the efficiency of authentication. It is proved that the scheme satisfies unforgeability in ECDLP hard problem in the random oracle model. The efficiency analysis shows that the scheme meets the security and efficiency requirements of the Internet of Vehicles and has certain practical significance.

2019-02-18
Iwendi, C., Uddin, M., Ansere, J. A., Nkurunziza, P., Anajemba, J. H., Bashir, A. K..  2018.  On Detection of Sybil Attack in Large-Scale VANETs Using Spider-Monkey Technique. IEEE Access. 6:47258–47267.
Sybil security threat in vehicular ad hoc networks (VANETs) has attracted much attention in recent times. The attacker introduces malicious nodes with multiple identities. As the roadside unit fails to synchronize its clock with legitimate vehicles, unintended vehicles are identified, and therefore erroneous messages will be sent to them. This paper proposes a novel biologically inspired spider-monkey time synchronization technique for large-scale VANETs to boost packet delivery time synchronization at minimized energy consumption. The proposed technique is based on the metaheuristic stimulated framework approach by the natural spider-monkey behavior. An artificial spider-monkey technique is used to examine the Sybil attacking strategies on VANETs to predict the number of vehicular collisions in a densely deployed challenge zone. Furthermore, this paper proposes the pseudocode algorithm randomly distributed for energy-efficient time synchronization in two-way packet delivery scenarios to evaluate the clock offset and the propagation delay in transmitting the packet beacon message to destination vehicles correctly. The performances of the proposed technique are compared with existing protocols. It performs better over long transmission distances for the detection of Sybil in dynamic VANETs' system in terms of measurement precision, intrusion detection rate, and energy efficiency.