Biblio
Darknet markets are online services behind Tor where cybercriminals trade illegal goods and stolen datasets. In recent years, security analysts and law enforcement start to investigate the darknet markets to study the cybercriminal networks and predict future incidents. However, vendors in these markets often create multiple accounts ($\backslash$em i.e., Sybils), making it challenging to infer the relationships between cybercriminals and identify coordinated crimes. In this paper, we present a novel approach to link the multiple accounts of the same darknet vendors through photo analytics. The core idea is that darknet vendors often have to take their own product photos to prove the possession of the illegal goods, which can reveal their distinct photography styles. To fingerprint vendors, we construct a series deep neural networks to model the photography styles. We apply transfer learning to the model training, which allows us to accurately fingerprint vendors with a limited number of photos. We evaluate the system using real-world datasets from 3 large darknet markets (7,641 vendors and 197,682 product photos). A ground-truth evaluation shows that the system achieves an accuracy of 97.5%, outperforming existing stylometry-based methods in both accuracy and coverage. In addition, our system identifies previously unknown Sybil accounts within the same markets (23) and across different markets (715 pairs). Further case studies reveal new insights into the coordinated Sybil activities such as price manipulation, buyer scam, and product stocking and reselling.
Detecting fake accounts (sybils) in online social networks (OSNs) is vital to protect OSN operators and their users from various malicious activities. Typical graph-based sybil detection (a mainstream methodology) assumes that sybils can make friends with only a limited (or small) number of honest users. However, recent evidences showed that this assumption does not hold in real-world OSNs, leading to low detection accuracy. To address this challenge, we explore users' activities to assist sybil detection. The intuition is that honest users are much more selective in choosing who to interact with than to befriend with. We first develop the social and activity network (SAN), a two-layer hyper-graph that unifies users' friendships and their activities, to fully utilize users' activities. We also propose a more practical sybil attack model, where sybils can launch both friendship attacks and activity attacks. We then design Sybil SAN to detect sybils via coupling three random walk-based algorithms on the SAN, and prove the convergence of Sybil SAN. We develop an efficient iterative algorithm to compute the detection metric for Sybil SAN, and derive the number of rounds needed to guarantee the convergence. We use "matrix perturbation theory" to bound the detection error when sybils launch many friendship attacks and activity attacks. Extensive experiments on both synthetic and real-world datasets show that Sybil SAN is highly robust against sybil attacks, and can detect sybils accurately under practical scenarios, where current state-of-art sybil defenses have low accuracy.