Visible to the public Biblio

Filters: Keyword is PSO  [Clear All Filters]
2022-01-31
Sandhu, Amandeep Kaur, Batth, Ranbir Singh.  2021.  A Hybrid approach to identify Software Reusable Components in Software Intelligence. 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM). :353–356.
Reusability is demarcated as the way of utilizing existing software components in software development. It plays a significant role in component-based software engineering. Extracting the components from the source code and checking the reusability factors is the most crucial part. Software Intelligence, a combination of data mining and artificial intelligence, helps to cope with the extraction and detection of reusability factor of the component. In this work prediction of reusability factor is considered. This paper proposes a hybrid PSO-NSGA III approach to detect whether the extracted component is reusable or not. The existing models lack in tuning the hyper parameters for prediction, which is considered in this work. The proposed approach was compared with four models, showing better outcomes in terms of performance metrics.
2021-07-27
Xu, Jiahui, Wang, Chen, Li, Tingting, Xiang, Fengtao.  2020.  Improved Adversarial Attack against Black-box Machine Learning Models. 2020 Chinese Automation Congress (CAC). :5907–5912.
The existence of adversarial samples makes the security of machine learning models in practical application questioned, especially the black-box adversarial attack, which is very close to the actual application scenario. Efficient search for black-box attack samples is helpful to train more robust models. We discuss the situation that the attacker can get nothing except the final predict label. As for this problem, the current state-of-the-art method is Boundary Attack(BA) and its variants, such as Biased Boundary Attack(BBA), however it still requires large number of queries and kills a lot of time. In this paper, we propose a novel method to solve these shortcomings. First, we improved the algorithm for generating initial adversarial samples with smaller L2 distance. Second, we innovatively combine a swarm intelligence algorithm - Particle Swarm Optimization(PSO) with Biased Boundary Attack and propose PSO-BBA method. Finally, we experiment on ImageNet dataset, and compared our algorithm with the baseline algorithm. The results show that:(1)our improved initial point selection algorithm effectively reduces the number of queries;(2)compared with the most advanced methods, our PSO-BBA method improves the convergence speed while ensuring the attack accuracy;(3)our method has a good effect on both targeted attack and untargeted attack.
2020-12-14
Cai, L., Hou, Y., Zhao, Y., Wang, J..  2020.  Application research and improvement of particle swarm optimization algorithm. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :238–241.
Particle swarm optimization (PSO), as a kind of swarm intelligence algorithm, has the advantages of simple algorithm principle, less programmable parameters and easy programming. Many scholars have applied particle swarm optimization (PSO) to various fields through learning it, and successfully solved linear problems, nonlinear problems, multiobjective optimization and other problems. However, the algorithm also has obvious problems in solving problems, such as slow convergence speed, too early maturity, falling into local optimization in advance, etc., which makes the convergence speed slow, search the optimal value accuracy is not high, and the optimization effect is not ideal. Therefore, many scholars have improved the particle swarm optimization algorithm. Taking into account the improvement ideas proposed by scholars in the early stage and the shortcomings still existing in the improvement, this paper puts forward the idea of improving particle swarm optimization algorithm in the future.
Tousi, S. Mohamad Ali, Mostafanasab, A., Teshnehlab, M..  2020.  Design of Self Tuning PID Controller Based on Competitional PSO. 2020 4th Conference on Swarm Intelligence and Evolutionary Computation (CSIEC). :022–026.
In this work, a new particle swarm optimization (PSO)-based optimization algorithm, and the idea of a running match is introduced and employed in a non-linear system PID controller design. This algorithm aims to modify the formula of velocity calculating of the general PSO method to increase the diversity of the searching process. In this process of designing an optimal PID controller for a non-linear system, the three gains of the PID controller form a particle, which is a parameter vector and will be updated iteratively. Many of those particles then form a population. To reach the PID gains which are optimum, using modified velocity updating formula and position updating formula, the position of all particles of the population will be moved into the optimization direction. In the meanwhile, an objective function may be minimized as the performance of the controller get improved. To corroborate the controller functioning of this method, a non-linear system known as inverted pendulum will be controlled by the designed PID controller. The results confirm that the new method can show excellent performance in the non-linear PID controller design task.
Goudos, S. K., Diamantoulakis, P. D., Boursianis, A. D., Papanikolaou, V. K., Karagiannidis, G. K..  2020.  Joint User Association and Power Allocation Using Swarm Intelligence Algorithms in Non-Orthogonal Multiple Access Networks. 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST). :1–4.
In this paper, we address the problem of joint user association and power allocation for non-orthogonal multiple access (NOMA) networks with multiple base stations (BSs). A user grouping procedure into orthogonal clusters, as well as an allocation of different physical resource blocks (PRBs) is considered. The problem of interest is mathematically described using the maximization of the weighted sum rate. We apply two different swarm intelligence algorithms, namely, the recently introduced Grey Wolf Optimizer (GWO), and the popular Particle Swarm Optimization (PSO), in order to solve this problem. Numerical results demonstrate that the above-described problem can be satisfactorily addressed by both algorithms.
2020-07-27
Rani, Sonam, Jain, Sushma.  2018.  Hybrid Approach to Detect Network Based Intrusion. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). :1–5.
In internet based communication, various types of attacks have been evolved. Hence, attacker easily breaches the securities. Traditional intrusion detection techniques to observe these attacks have failed and thus hefty systems are required to remove these attacks before they expose entire network. With the ability of artificial intelligence systems to adapt high computational speed, boost fault tolerance, and error resilience against noisy information, a hybrid particle swarm optimization(PSO) fuzzy rule based inference engine has been designed in this paper. The fuzzy logic based on degree of truth while the PSO algorithm based on population stochastic technique helps in learning from the scenario, thus their combination will increase the toughness of intrusion detection system. The proposed network intrusion detection system will be able to classify normal as well as anomalism behaviour in the network. DARPA-KDD99 dataset examined on this system to address the behaviour of each connection on network and compared with existing system. This approach improves the result on the basis of precision, recall and F1-score.
2019-12-16
Wu, Jimmy Ming-Tai, Chun-Wei Lin, Jerry, Djenouri, Youcef, Fournier-Viger, Philippe, Zhang, Yuyu.  2019.  A Swarm-based Data Sanitization Algorithm in Privacy-Preserving Data Mining. 2019 IEEE Congress on Evolutionary Computation (CEC). :1461–1467.
In recent decades, data protection (PPDM), which not only hides information, but also provides information that is useful to make decisions, has become a critical concern. We present a sanitization algorithm with the consideration of four side effects based on multi-objective PSO and hierarchical clustering methods to find optimized solutions for PPDM. Experiments showed that compared to existing approaches, the designed sanitization algorithm based on the hierarchical clustering method achieves satisfactory performance in terms of hiding failure, missing cost, and artificial cost.
2019-08-26
Mavroeidis, V., Vishi, K., Jøsang, A..  2018.  A Framework for Data-Driven Physical Security and Insider Threat Detection. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :1108–1115.

This paper presents PSO, an ontological framework and a methodology for improving physical security and insider threat detection. PSO can facilitate forensic data analysis and proactively mitigate insider threats by leveraging rule-based anomaly detection. In all too many cases, rule-based anomaly detection can detect employee deviations from organizational security policies. In addition, PSO can be considered a security provenance solution because of its ability to fully reconstruct attack patterns. Provenance graphs can be further analyzed to identify deceptive actions and overcome analytical mistakes that can result in bad decision-making, such as false attribution. Moreover, the information can be used to enrich the available intelligence (about intrusion attempts) that can form use cases to detect and remediate limitations in the system, such as loosely-coupled provenance graphs that in many cases indicate weaknesses in the physical security architecture. Ultimately, validation of the framework through use cases demonstrates and proves that PS0 can improve an organization's security posture in terms of physical security and insider threat detection.

2019-02-21
Gao, Y..  2018.  An Improved Hybrid Group Intelligent Algorithm Based on Artificial Bee Colony and Particle Swarm Optimization. 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :160–163.
Aiming at the disadvantage of poor convergence performance of PSO and artificial swarm algorithm, an improved hybrid algorithm is proposed to overcome the shortcomings of complex optimization problems. Through the test of four standard function by hybrid algorithm and compared the result with standard particle swarm optimization (PSO) algorithm and Artificial Bee Colony (ABC) algorithm, the convergence rate and convergence precision of the hybrid algorithm are both superior to those of the standard particle swarm algorithm and Artificial Bee Colony algorithm, presenting a better optimal performance.