Visible to the public Biblio

Filters: Keyword is security incidents  [Clear All Filters]
2020-09-21
Osman, Amr, Bruckner, Pascal, Salah, Hani, Fitzek, Frank H. P., Strufe, Thorsten, Fischer, Mathias.  2019.  Sandnet: Towards High Quality of Deception in Container-Based Microservice Architectures. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–7.
Responding to network security incidents requires interference with ongoing attacks to restore the security of services running on production systems. This approach prevents damage, but drastically impedes the collection of threat intelligence and the analysis of vulnerabilities, exploits, and attack strategies. We propose the live confinement of suspicious microservices into a sandbox network that allows to monitor and analyze ongoing attacks under quarantine and that retains an image of the vulnerable and open production network. A successful sandboxing requires that it happens completely transparent to and cannot be detected by an attacker. Therefore, we introduce a novel metric to measure the Quality of Deception (QoD) and use it to evaluate three proposed network deception mechanisms. Our evaluation results indicate that in our evaluation scenario in best case, an optimal QoD is achieved. In worst case, only a small downtime of approx. 3s per microservice (MS) occurs and thus a momentary drop in QoD to 70.26% before it converges back to optimum as the quarantined services are restored.
2019-05-09
Sokolov, A. N., Barinov, A. E., Antyasov, I. S., Skurlaev, S. V., Ufimtcev, M. S., Luzhnov, V. S..  2018.  Hardware-Based Memory Acquisition Procedure for Digital Investigations of Security Incidents in Industrial Control Systems. 2018 Global Smart Industry Conference (GloSIC). :1-7.

The safety of industrial control systems (ICS) depends not only on comprehensive solutions for protecting information, but also on the timing and closure of vulnerabilities in the software of the ICS. The investigation of security incidents in the ICS is often greatly complicated by the fact that malicious software functions only within the computer's volatile memory. Obtaining the contents of the volatile memory of an attacked computer is difficult to perform with a guaranteed reliability, since the data collection procedure must be based on a reliable code (the operating system or applications running in its environment). The paper proposes a new instrumental method for obtaining the contents of volatile memory, general rules for implementing the means of collecting information stored in memory. Unlike software methods, the proposed method has two advantages: firstly, there is no problem in terms of reading the parts of memory, blocked by the operating system, and secondly, the resulting contents are not compromised by such malicious software. The proposed method is relevant for investigating security incidents of ICS and can be used in continuous monitoring systems for the security of ICS.

2019-02-22
Yu, R., Xue, G., Kilari, V. T., Zhang, X..  2018.  Deploying Robust Security in Internet of Things. 2018 IEEE Conference on Communications and Network Security (CNS). :1-9.

Popularization of the Internet-of-Things (IoT) has brought widespread concerns on IoT security, especially in face of several recent security incidents related to IoT devices. Due to the resource-constrained nature of many IoT devices, security offloading has been proposed to provide good-enough security for IoT with minimum overhead on the devices. In this paper, we investigate the inevitable risk associated with security offloading: the unprotected and unmonitored transmission from IoT devices to the offloaded security mechanisms. An important challenge in modeling the security risk is the dynamic nature of IoT due to demand fluctuations and infrastructure instability. We propose a stochastic model to capture both the expected and worst-case security risks of an IoT system. We then propose a framework to efficiently address the optimal robust deployment of security mechanisms in IoT. We use results from extensive simulations to demonstrate the superb performance and efficiency of our approach compared to several other algorithms.