Visible to the public Biblio

Filters: Keyword is ETL  [Clear All Filters]
2019-09-23
Zheng, N., Alawini, A., Ives, Z. G..  2019.  Fine-Grained Provenance for Matching ETL. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :184–195.
Data provenance tools capture the steps used to produce analyses. However, scientists must choose among workflow provenance systems, which allow arbitrary code but only track provenance at the granularity of files; provenance APIs, which provide tuple-level provenance, but incur overhead in all computations; and database provenance tools, which track tuple-level provenance through relational operators and support optimization, but support a limited subset of data science tasks. None of these solutions are well suited for tracing errors introduced during common ETL, record alignment, and matching tasks - for data types such as strings, images, etc. Scientists need new capabilities to identify the sources of errors, find why different code versions produce different results, and identify which parameter values affect output. We propose PROVision, a provenance-driven troubleshooting tool that supports ETL and matching computations and traces extraction of content within data objects. PROVision extends database-style provenance techniques to capture equivalences, support optimizations, and enable selective evaluation. We formalize our extensions, implement them in the PROVision system, and validate their effectiveness and scalability for common ETL and matching tasks.
2019-02-25
Pareek, Alok, Khaladkar, Bhushan, Sen, Rajkumar, Onat, Basar, Nadimpalli, Vijay, Lakshminarayanan, Mahadevan.  2018.  Real-time ETL in Striim. Proceedings of the International Workshop on Real-Time Business Intelligence and Analytics. :3:1–3:10.
In the new digital economy, on demand access of real time enterprise data is critical to modernize cross organizational, cross partner, and online consumer functions. In addition to on premise legacy data, enterprises are producing an enormous amount of real-time data through new hybrid cloud applications; these event streams need to be collected, transformed and analyzed in real-time to make critical business decision. Traditional Extract-Load-Transform (ETL) processes are no longer sufficient and need to be re-architected to account for streaming, heterogeneity, usability, extensibility (custom processing), and continuous validity. Striim is a novel end-to-end distributed streaming ETL and intelligence platform that enables rapid development and deployment of streaming applications. Striim's real-time ETL engine has been architected from ground-up to enable both business users and developers to build and deploy streaming applications. In this paper, we describe some of the core features of Striim's ETL engine (i) built-in adapters to extract and load data in real-time from legacy and new cloud sources/targets (ii) an extensible SQL-based transformation engine to transform events; users can inject custom logic via a component called Open Processor (iv) New primitives like MODIFY, BEFORE and AFTER and (v) built-in data validation that continuously checks if everything is continually making it to the destination.