Biblio
Filters: Keyword is SMS Spam [Clear All Filters]
A Fog-Augmented Machine Learning based SMS Spam Detection and Classification System. 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC). :325–330.
.
2020. Smart cities and societies are driving unprecedented technological and socioeconomic growth in everyday life albeit making us increasingly vulnerable to infinitely and incomprehensibly diverse threats. Short Message Service (SMS) spam is one such threat that can affect mobile security by propagating malware on mobile devices. A security breach could also cause a mobile device to send spam messages. Many works have focused on classifying incoming SMS messages. This paper proposes a tool to detect spam from outgoing SMS messages, although the work can be applied to both incoming and outgoing SMS messages. Specifically, we develop a system that comprises multiple machine learning (ML) based classifiers built by us using three classification methods – Naïve Bayes (NB), Support Vector Machine (SVM), and Naïve Bayes Multinomial (NBM)- and five preprocessing and feature extraction methods. The system is built to allow its execution in cloud, fog or edge layers, and is evaluated using 15 datasets built by 4 widely-used public SMS datasets. The system detects spam SMSs and gives recommendations on the spam filters and classifiers to be used based on user preferences including classification accuracy, True Negatives (TN), and computational resource requirements.
The Roving Proxy Framewrok for SMS Spam and Phishing Detection. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
.
2019. This paper presents the details of the roving proxy framework for SMS spam and SMS phishing (SMishing) detection. The framework aims to protect organizations and enterprises from the danger of SMishing attacks. Feasibility and functionality studies of the framework are presented along with an update process study to define the minimum requirements for the system to adapt with the latest spam and SMishing trends.
Convolutional Neural Network Based SMS Spam Detection. 2018 26th Telecommunications Forum (℡FOR). :1–4.
.
2018. SMS spam refers to undesired text message. Machine Learning methods for anti-spam filters have been noticeably effective in categorizing spam messages. Dataset used in this research is known as Tiago's dataset. Crucial step in the experiment was data preprocessing, which involved reducing text to lower case, tokenization, removing stopwords. Convolutional Neural Network was the proposed method for classification. Overall model's accuracy was 98.4%. Obtained model can be used as a tool in many applications.