Visible to the public Biblio

Filters: Keyword is spam classifiers  [Clear All Filters]
2020-02-10
Krause, Tim, Uetz, Rafael, Kretschmann, Tim.  2019.  Recognizing Email Spam from Meta Data Only. 2019 IEEE Conference on Communications and Network Security (CNS). :178–186.

We propose a new spam detection approach based solely on meta data features gained from email headers. The approach achieves above 99 % classification accuracy on the CSDMC2010 dataset, which matches or surpasses state-of-the-art spam classifiers. We utilize a static set of engineered features, supplemented with automatically extracted features. The approach is just as effective for spam detection in end-to-end encryption, as our feature set remains unchanged for encrypted emails. In contrast to most established spam detectors, we disregard the email body completely and can therefore deliver very high classification speeds, as computationally expensive text preprocessing is not necessary.

2019-02-25
Xu, H., Hu, L., Liu, P., Xiao, Y., Wang, W., Dayal, J., Wang, Q., Tang, Y..  2018.  Oases: An Online Scalable Spam Detection System for Social Networks. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :98–105.
Web-based social networks enable new community-based opportunities for participants to engage, share their thoughts, and interact with each other. Theses related activities such as searching and advertising are threatened by spammers, content polluters, and malware disseminators. We propose a scalable spam detection system, termed Oases, for uncovering social spam in social networks using an online and scalable approach. The novelty of our design lies in two key components: (1) a decentralized DHT-based tree overlay deployment for harvesting and uncovering deceptive spam from social communities; and (2) a progressive aggregation tree for aggregating the properties of these spam posts for creating new spam classifiers to actively filter out new spam. We design and implement the prototype of Oases and discuss the design considerations of the proposed approach. Our large-scale experiments using real-world Twitter data demonstrate scalability, attractive load-balancing, and graceful efficiency in online spam detection for social networks.