Visible to the public Biblio

Filters: Keyword is NIALM  [Clear All Filters]
2020-11-20
Semwal, S., Badoni, M., Saxena, N..  2019.  Smart Meters for Domestic Consumers: Innovative Methods for Identifying Appliances using NIALM. 2019 Women Institute of Technology Conference on Electrical and Computer Engineering (WITCON ECE). :81—90.
A country drives by their people and the electricity energy, the availability of the electricity power reflects the strength of that country. All most everything depends on the electricity energy, So it is become very important that we use the available energy very efficiently, and here the energy management come in the picture and Non Intrusive appliance Load monitoring (NIALM) is the part of energy management, in which the energy consumption by the particular load is monitored without any intrusion of wire/circuit. In literature, NIALM has been discussed as a monitoring process for conservation of energy using single point sensing (SPS) for extraction of aggregate signal of the appliances' features, ignoring the second function of demand response (DR) assuming that it would be manual or sensor-based. This assumption is not implementable in developing countries like India, because of requirement of extra cost of sensors, and privacy concerns. Surprisingly, despite decades of research on NIALM, none of the suggested procedures has resulted in commercial application. This paper highlights the causes behind non- commercialization, and proposes a viable and easy solution worthy of commercial exploitation both for monitoring and DR management for outage reduction in respect of Indian domestic consumers. Using a approach of multi point sensing (MPS), combined with Independent Component Analysis (ICA), experiments has been done in laboratory environment and CPWD specification has been followed.
2019-02-25
Völker, Benjamin, Scholls, Philipp M., Schubert, Tobias, Becker, Bernd.  2018.  Towards the Fusion of Intrusive and Non-Intrusive Load Monitoring: A Hybrid Approach. Proceedings of the Ninth International Conference on Future Energy Systems. :436-438.

With Electricity as a fundamental part of our life, its production has still large, negative environmental impact. Therefore, one strain of research is to optimize electricity usage by avoiding its unnecessary consumption or time its consumption when green energy is available. The shift towards an Advanced Metering Infrastructure (AMI) allows to optimize energy distribution based on the current load at residence level. However, applications such as Demand Management and Advanced Load Forecasting require information further down at device level, which cannot be provided by standard electricity meters nor existing AMIs. Hence, different approaches for appliance monitoring emerged over the past 30 years which are categorized into Intrusive systems requiring multiple distributed sensors and Non-Intrusive systems requiring a single unobtrusive sensor. Although each category has been individually explored, hybrid approaches have received little attention. Our experiments highlight that variable consumer devices (e.g. PCs) are detrimental to the detection performance of non-intrusive systems. We further show that their influence can be inhibited by using sensor data from additional intrusive sensors. Even fairly straightforward sensor fusion techniques lead to a classification performance (F1) gain from 84.88 % to 93.41 % in our test setup. As this highlights the potential to contribute to the global goal of saving energy, we define further research directions for hybrid load monitoring systems.