Visible to the public Biblio

Filters: Keyword is partial evaluation  [Clear All Filters]
2019-12-05
Leißa, Roland, Boesche, Klaas, Hack, Sebastian, Pérard-Gayot, Arsène, Membarth, Richard, Slusallek, Philipp, Müller, André, Schmidt, Bertil.  2018.  AnyDSL: A Partial Evaluation Framework for Programming High-Performance Libraries. Proc. ACM Program. Lang.. 2:119:1-119:30.

This paper advocates programming high-performance code using partial evaluation. We present a clean-slate programming system with a simple, annotation-based, online partial evaluator that operates on a CPS-style intermediate representation. Our system exposes code generation for accelerators (vectorization/parallelization for CPUs and GPUs) via compiler-known higher-order functions that can be subjected to partial evaluation. This way, generic implementations can be instantiated with target-specific code at compile time. In our experimental evaluation we present three extensive case studies from image processing, ray tracing, and genome sequence alignment. We demonstrate that using partial evaluation, we obtain high-performance implementations for CPUs and GPUs from one language and one code base in a generic way. The performance of our codes is mostly within 10%, often closer to the performance of multi man-year, industry-grade, manually-optimized expert codes that are considered to be among the top contenders in their fields.

2019-03-04
Buck, Joshua W., Perugini, Saverio, Nguyen, Tam V..  2018.  Natural Language, Mixed-initiative Personal Assistant Agents. Proceedings of the 12th International Conference on Ubiquitous Information Management and Communication. :82:1–82:8.
The increasing popularity and use of personal voice assistant technologies, such as Siri and Google Now, is driving and expanding progress toward the long-term and lofty goal of using artificial intelligence to build human-computer dialog systems capable of understanding natural language. While dialog-based systems such as Siri support utterances communicated through natural language, they are limited in the flexibility they afford to the user in interacting with the system and, thus, support primarily action-requesting and information-seeking tasks. Mixed-initiative interaction, on the other hand, is a flexible interaction technique where the user and the system act as equal participants in an activity, and is often exhibited in human-human conversations. In this paper, we study user support for mixed-initiative interaction with dialog-based systems through natural language using a bag-of-words model and k-nearest-neighbor classifier. We study this problem in the context of a toolkit we developed for automated, mixed-initiative dialog system construction, involving a dialog authoring notation and management engine based on lambda calculus, for specifying and implementing task-based, mixed-initiative dialogs. We use ordering at Subway through natural language, human-computer dialogs as a case study. Our results demonstrate that the dialogs authored with our toolkit support the end user's completion of a natural language, human-computer dialog in a mixed-initiative fashion. The use of natural language in the resulting mixed-initiative dialogs afford the user the ability to experience multiple self-directed paths through the dialog and makes the flexibility in communicating user utterances commensurate with that in dialog completion paths—an aspect missing from commercial assistants like Siri.