Visible to the public Biblio

Filters: Keyword is NLP techniques  [Clear All Filters]
2021-02-08
Zhang, J..  2020.  DeepMal: A CNN-LSTM Model for Malware Detection Based on Dynamic Semantic Behaviours. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :313–316.
Malware refers to any software accessing or being installed in a system without the authorisation of administrators. Various malware has been widely used for cyber-criminals to accomplish their evil intentions and goals. To combat the increasing amount and reduce the threat of malicious programs, a novel deep learning framework, which uses NLP techniques for reference, combines CNN and LSTM neurones to capture the locally spatial correlations and learn from sequential longterm dependency is proposed. Hence, high-level abstractions and representations are automatically extracted for the malware classification task. The classification accuracy improves from 0.81 (best one by Random Forest) to approximately 1.0.
2019-03-04
Husari, G., Niu, X., Chu, B., Al-Shaer, E..  2018.  Using Entropy and Mutual Information to Extract Threat Actions from Cyber Threat Intelligence. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–6.
With the rapid growth of the cyber attacks, cyber threat intelligence (CTI) sharing becomes essential for providing advance threat notice and enabling timely response to cyber attacks. Our goal in this paper is to develop an approach to extract low-level cyber threat actions from publicly available CTI sources in an automated manner to enable timely defense decision making. Specifically, we innovatively and successfully used the metrics of entropy and mutual information from Information Theory to analyze the text in the cybersecurity domain. Combined with some basic NLP techniques, our framework, called ActionMiner has achieved higher precision and recall than the state-of-the-art Stanford typed dependency parser, which usually works well in general English but not cybersecurity texts.