Visible to the public Biblio

Filters: Keyword is Big Data Applications  [Clear All Filters]
2022-06-13
Stauffer, Jake, Zhang, Qingxue.  2021.  s2Cloud: A Novel Cloud System for Mobile Health Big Data Management. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :380–383.
The era of big data continues to progress, and many new practices and applications are being advanced. One such application is big data in healthcare. In this application, big data, which includes patient information and measurements, must be transmitted and managed in smart and secure ways. In this study, we propose a novel big data cloud system, s2Cloud, standing for Smart and Secure Cloud. s2Cloud can enable health care systems to improve patient monitoring and help doctors gain crucial insights into their patients' health. This system provides an interactive website that allows doctors to effectively manage patients and patient records. Furthermore, both real-time and historical functions for big data management are supported. These functions provide visualizations of patient measurements and also allow for historic data retrieval so further analysis can be conducted. The security is achieved by protecting access and transmission of data via sign up and log in portals. Overall, the proposed s2Cloud system can effectively manage healthcare big data applications. This study will also help to advance other big data applications such as smart home and smart world big data practices.
2022-06-08
Guo, Jiansheng, Qi, Liang, Suo, Jiao.  2021.  Research on Data Classification of Intelligent Connected Vehicles Based on Scenarios. 2021 International Conference on E-Commerce and E-Management (ICECEM). :153–158.
The intelligent connected vehicle industry has entered a period of opportunity, industry data is accumulating rapidly, and the formulation of industry standards to regulate big data management and application is imminent. As the basis of data security, data classification has received unprecedented attention. By combing through the research and development status of data classification in various industries, this article combines industry characteristics and re-examines the framework of industry data classification from the aspects of information security and data assetization, and tries to find the balance point between data security and data value. The intelligent networked automobile industry provides support for big data applications, this article combines the characteristics of the connected vehicle industry, re-examines the data characteristics of the intelligent connected vehicle industry from the 2 aspects as information security and data assetization, and eventually proposes a scene-based hierarchical framework. The framework includes the complete classification process, model, and quantifiable parameters, which provides a solution and theoretical endorsement for the construction of a big data automatic classification system for the intelligent connected vehicle industry and safe data open applications.
2020-08-24
Harris, Daniel R., Delcher, Chris.  2019.  bench4gis: Benchmarking Privacy-aware Geocoding with Open Big Data. 2019 IEEE International Conference on Big Data (Big Data). :4067–4070.
Geocoding, the process of translating addresses to geographic coordinates, is a relatively straight-forward and well-studied process, but limitations due to privacy concerns may restrict usage of geographic data. The impact of these limitations are further compounded by the scale of the data, and in turn, also limits viable geocoding strategies. For example, healthcare data is protected by patient privacy laws in addition to possible institutional regulations that restrict external transmission and sharing of data. This results in the implementation of “in-house” geocoding solutions where data is processed behind an organization's firewall; quality assurance for these implementations is problematic because sensitive data cannot be used to externally validate results. In this paper, we present our software framework called bench4gis which benchmarks privacy-aware geocoding solutions by leveraging open big data as surrogate data for quality assurance; the scale of open big data sets for address data can ensure that results are geographically meaningful for the locale of the implementing institution.
2019-03-06
Cuzzocrea, A., Damiani, E..  2018.  Pedigree-Ing Your Big Data: Data-Driven Big Data Privacy in Distributed Environments. 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :675-681.
This paper introduces a general framework for supporting data-driven privacy-preserving big data management in distributed environments, such as emerging Cloud settings. The proposed framework can be viewed as an alternative to classical approaches where the privacy of big data is ensured via security-inspired protocols that check several (protocol) layers in order to achieve the desired privacy. Unfortunately, this injects considerable computational overheads in the overall process, thus introducing relevant challenges to be considered. Our approach instead tries to recognize the "pedigree" of suitable summary data representatives computed on top of the target big data repositories, hence avoiding computational overheads due to protocol checking. We also provide a relevant realization of the framework above, the so-called Data-dRIven aggregate-PROvenance privacypreserving big Multidimensional data (DRIPROM) framework, which specifically considers multidimensional data as the case of interest.