Visible to the public Biblio

Filters: Keyword is Traffic forecast  [Clear All Filters]
2021-06-01
Lu, Chang, Lei, Xiaochun, Xie, Junlin, Wang, Xiaolong, Mu, XiangBoge.  2020.  Panoptic Feature Pyramid Network Applications In Intelligent Traffic. 2020 16th International Conference on Computational Intelligence and Security (CIS). :40–43.
Intelligenta transportation is an important part of urban development. The core of realizing intelligent transportation is to master the urban road condition. This system processes the video of dashcam based on the Panoptic Segmentation network and adds a tracking module based on the comparison of front and rear frames and KM algorithm. The system mainly includes the following parts: embedded device, Panoptic Feature Pyramid Network, cloud server and Web site.
2019-03-06
Li, W., Li, S., Zhang, X., Pan, Q..  2018.  Optimization Algorithm Research of Logistics Distribution Path Based on the Deep Belief Network. 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :60-63.

Aiming at the phenomenon that the urban traffic is complex at present, the optimization algorithm of the traditional logistic distribution path isn't sensitive to the change of road condition without strong application in the actual logistics distribution, the optimization algorithm research of logistics distribution path based on the deep belief network is raised. Firstly, build the traffic forecast model based on the deep belief network, complete the model training and conduct the verification by learning lots of traffic data. On such basis, combine the predicated road condition with the traffic network to build the time-share traffic network, amend the access set and the pheromone variable of ant algorithm in accordance with the time-share traffic network, and raise the optimization algorithm of logistics distribution path based on the traffic forecasting. Finally, verify the superiority and application value of the algorithm in the actual distribution through the optimization algorithm contrast test with other logistics distribution paths.