Biblio
In this paper we present a new approach, named DLGraph, for malware detection using deep learning and graph embedding. DLGraph employs two stacked denoising autoencoders (SDAs) for representation learning, taking into consideration computer programs' function-call graphs and Windows application programming interface (API) calls. Given a program, we first use a graph embedding technique that maps the program's function-call graph to a vector in a low-dimensional feature space. One SDA in our deep learning model is used to learn a latent representation of the embedded vector of the function-call graph. The other SDA in our model is used to learn a latent representation of the given program's Windows API calls. The two learned latent representations are then merged to form a combined feature vector. Finally, we use softmax regression to classify the combined feature vector for predicting whether the given program is malware or not. Experimental results based on different datasets demonstrate the effectiveness of the proposed approach and its superiority over a related method.
Affective1 engineering is a methodology of designing products by collecting customer affective needs and translating them into product designs. It usually begins with questionnaire surveys to collect customer affective demands and responses. However, this process is expensive, which can only be conducted periodically in a small scale. With the rapid development of e-commerce, a larger number of customer product reviews are available on the Internet. Many studies have been done using opinion mining and sentiment analysis. However, the existing studies focus on the polarity classification from a single perspective (such as positive and negative). The classification of multiple affective attributes receives less attention. In this paper, 3-class classifications of four different affective attributes (i.e. Soft-Hard, Appealing-Unappealing, Handy-Bulky, and Reliable-Shoddy) are performed by using two classical machine learning algorithms (i.e. Softmax regression and Support Vector Machine) and two deep learning methods (i.e. Restricted Boltzmann machines and Deep Belief Network) on an Amazon dataset. The results show that the accuracy of deep learning methods is above 90%, while the accuracy of classical machine learning methods is about 64%. This indicates that deep learning methods are significantly better than classical machine learning methods.