Biblio
Using security primitives, a novel scheme for licensing hardware intellectual properties (HWIPs) on Field Programmable Gate Arrays (FPGAs) in public clouds is proposed. The proposed scheme enforces a pay-per-use model, allows HWIP's installation only on specific on-cloud FPGAs, and efficiently protects the HWIPs from being cloned, reverse engineered, or used without the owner's authorization by any party, including a cloud insider. It also provides protection for the users' designs integrated with the HWIP on the same FPGA. This enables cloud tenants to license HWIPs in the cloud from the HWIP vendors at a relatively low price based on usage instead of paying the expensive unlimited HWIP license fee. The scheme includes a protocol for FPGA authentication, HWIP secure decryption, and usage by the clients without the need for the HWIP vendor to be involved or divulge their secret keys. A complete prototype test-bed implementation showed that the proposed scheme is very feasible with relatively low resource utilization. Experiments also showed that a HWIP could be licensed and set up in the on-cloud FPGA in 0.9s. This is 15 times faster than setting up the same HWIP from outside the cloud, which takes about 14s based on the average global Internet speed.
Software agents represent an assured computing paradigm that tends to emerge to be an elegant technology to solve present day problems. The eminent Scientific Community has proved us with the usage or implementation of software agent's usage approach that simplifies the proposed solution in various types to solve the traditional computing problems arise. The proof of the same is implemented in several applications that exist based on this area of technology where the software agents have maximum benefits but on the same hand absence of the suitable security mechanisms that endures for systems that are based on representation of barriers exists in the paradigm with respect to present day industry. As the application proposing present security mechanisms is not a trivial one as the agent based system builders or developers who are not often security experts as they subsequently do not count on the area of expertise. This paper presents a novel approach for protecting the infrastructure for solving the issues considered to be malicious host in mobile agent system by implementing a secure protocol to migrate agents from host to host relying in various elements based on the enhanced Trusted Platforms Modules (TPM) for processing data. We use enhanced extension to the Java Agent Development framework (JADE) in our proposed system and a migrating protocol is used to validate the proposed framework (AVASPA).