Biblio
Cyber threats and attacks have significantly increased in complexity and quantity throughout this past year. In this paper, the top fifteen cyber threats and trends are articulated in detail to provide awareness throughout the community and raising awareness. Specific attack vectors, mitigation techniques, kill chain and threat agents addressing Smart Digital Environments (SDE), including Internet of Things (IoT), are discussed. Due to the rising number of IoT and embedded firmware devices within ubiquitous computing environments such as smart homes, smart businesses and smart cities, the top fifteen cyber threats are being used in a comprehensive manner to take advantage of vulnerabilities and launch cyber operations using multiple attack vectors. What began as ubiquitous, or pervasive, computing is now matured to smart environments where the vulnerabilities and threats are widespread.
Traditional security controls, such as firewalls, anti-virus and IDS, are ill-equipped to help IT security and response teams keep pace with the rapid evolution of the cyber threat landscape. Cyber Threat Intelligence (CTI) can help remediate this problem by exploiting non-traditional information sources, such as hacker forums and "dark-web" social platforms. Security and response teams can use the collected intelligence to identify emerging threats. Unfortunately, when manual analysis is used to extract CTI from non-traditional sources, it is a time consuming, error-prone and resource intensive process. We address these issues by using a hybrid Machine Learning model that automatically searches through hacker forum posts, identifies the posts that are most relevant to cyber security and then clusters the relevant posts into estimations of the topics that the hackers are discussing. The first (identification) stage uses Support Vector Machines and the second (clustering) stage uses Latent Dirichlet Allocation. We tested our model, using data from an actual hacker forum, to automatically extract information about various threats such as leaked credentials, malicious proxy servers, malware that evades AV detection, etc. The results demonstrate our method is an effective means for quickly extracting relevant and actionable intelligence that can be integrated with traditional security controls to increase their effectiveness.