Biblio
This paper proposes an advanced scheme of message security in 3D cover images using multiple layers of security. Cryptography using AES-256 is implemented in the first layer. In the second layer, edge detection is applied. Finally, LSB steganography is executed in the third layer. The efficiency of the proposed scheme is measured using a number of performance metrics. For instance, mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), mean absolute error (MAE) and entropy.
Least Significant Bit (LSB) as one of steganography methods that already exist today is really mainstream because easy to use, but has weakness that is too easy to decode the hidden message. It is because in LSB the message embedded evenly to all pixels of an image. This paper introduce a method of steganography that combine LSB with clustering method that is Fuzzy C-Means (FCM). It is abbreviated with LSB\_FCM, then compare the stegano result with LSB method. Each image will divided into two cluster, then the biggest cluster capacity will be choosen, finally save the cluster coordinate key as place for embedded message. The key as a reference when decode the message. Each image has their own cluster capacity key. LSB\_FCM has disadvantage that is limited place to embedded message, but it also has advantages compare with LSB that is LSB\_FCM have more difficulty level when decrypted the message than LSB method, because in LSB\_FCM the messages embedded randomly in the best cluster pixel of an image, so to decrypted people must have the cluster coordinate key of the image. Evaluation result show that the MSE and PSNR value of LSB\_FCM some similiar with the pure LSB, it means that LSB\_FCM can give imperceptible image as good as the pure LSB, but have better security from the embedding place.
Indoor localization of unknown acoustic events with MEMS microphone arrays have a huge potential in applications like home assisted living and surveillance. This article presents an Angle of Arrival (AoA) fingerprinting method for use in Wireless Acoustic Sensor Networks (WASNs) with low-profile microphone arrays. In a first research phase, acoustic measurements are performed in an anechoic room to evaluate two computationally efficient time domain delay-based AoA algorithms: one based on dot product calculations and another based on dot products with a PHAse Transform (PHAT). The evaluation of the algorithms is conducted with two sound events: white noise and a female voice. The algorithms are able to calculate the AoA with Root Mean Square Errors (RMSEs) of 3.5° for white noise and 9.8° to 16° for female vocal sounds. In the second research phase, an AoA fingerprinting algorithm is developed for acoustic event localization. The proposed solution is experimentally verified in a room of 4.25 m by 9.20 m with 4 acoustic sensor nodes. Acoustic fingerprints of white noise, recorded along a predefined grid in the room, are used to localize white noise and vocal sounds. The localization errors are evaluated using one node at a time, resulting in mean localization errors between 0.65 m and 0.98 m for white noise and between 1.18 m and 1.52 m for vocal sounds.
Parameter estimation in wireless sensor networks (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a non-binary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R $ε$ 1, 2, 3,..., encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented.
Accurate short-term traffic flow forecasting is of great significance for real-time traffic control, guidance and management. The k-nearest neighbor (k-NN) model is a classic data-driven method which is relatively effective yet simple to implement for short-term traffic flow forecasting. For conventional prediction mechanism of k-NN model, the k nearest neighbors' outputs weighted by similarities between the current traffic flow vector and historical traffic flow vectors is directly used to generate prediction values, so that the prediction results are always not ideal. It is observed that there are always some outliers in k nearest neighbors' outputs, which may have a bad influences on the prediction value, and the local similarities between current traffic flow and historical traffic flows at the current sampling period should have a greater relevant to the prediction value. In this paper, we focus on improving the prediction mechanism of k-NN model and proposed a k-nearest neighbor locally search regression algorithm (k-LSR). The k-LSR algorithm can use locally search strategy to search for optimal nearest neighbors' outputs and use optimal nearest neighbors' outputs weighted by local similarities to forecast short-term traffic flow so as to improve the prediction mechanism of k-NN model. The proposed algorithm is tested on the actual data and compared with other algorithms in performance. We use the root mean squared error (RMSE) as the evaluation indicator. The comparison results show that the k-LSR algorithm is more successful than the k-NN and k-nearest neighbor locally weighted regression algorithm (k-LWR) in forecasting short-term traffic flow, and which prove the superiority and good practicability of the proposed algorithm.
The following topics are dealt with: feature extraction; data mining; support vector machines; mobile computing; photovoltaic power systems; mean square error methods; fault diagnosis; natural language processing; control system synthesis; and Internet of Things.
In order to investigate the relationship and effect on the performance of magnetic modulator among applied DC current, excitation source, excitation loop current, sensitivity and induced voltage of detecting winding, this paper measured initial permeability, maximum permeability, saturation magnetic induction intensity, remanent magnetic induction intensity, coercivity, saturated magnetic field intensity, magnetization curve, permeability curve and hysteresis loop of main core 1J85 permalloy of magnetic modulator based on ballistic method. On this foundation, employ curve fitting tool of MATLAB; adopt multiple regression method to comprehensively compare and analyze the sum of squares due to error (SSE), coefficient of determination (R-square), degree-of-freedom adjusted coefficient of determination (Adjusted R-square), and root mean squared error (RMSE) of fitting results. Finally, establish B-H curve mathematical model based on the sum of arc-hyperbolic sine function and polynomial.
Recommender system is to suggest items that might be interest of the users in social networks. Collaborative filtering is an approach that works based on similarity and recommends items liked by other similar users. Trust model adopts users' trust network in place of similarity. Multi-faceted trust model considers multiple and heterogeneous trust relationship among the users and recommend items based on rating exist in the network of trustees of a specific facet. This paper applies genetic algorithm to estimate parameters of multi-faceted trust model, in which the trust weights are calculated based on the ratings and the trust network for each facet, separately. The model was built on Epinions data set that includes consumers' opinion, rating for items and the web of trust network. It was used to predict users' rating for items in different facets and root mean squared of prediction error (RMSE) was considered as a measure of performance. Empirical evaluations demonstrated that multi-facet models improve performance of the recommender system.
Salt and Pepper Noise is very common during transmission of images through a noisy channel or due to impairment in camera sensor module. For noise removal, methods have been proposed in literature, with two stage cascade various configuration. These methods, can remove low density impulse noise, are not suited for high density noise in terms of visible performance. We propose an efficient method for removal of high as well as low density impulse noise. Our approach is based on novel extension over iterated conditional modes (ICM). It is cascade configuration of two stages - noise detection and noise removal. Noise detection process is a combination of iterative decision based approach, while noise removal process is based on iterative noisy pixel estimation. Using improvised approach, up to 95% corrupted image have been recovered with good results, while 98% corrupted image have been recovered with quite satisfactory results. To benchmark the image quality, we have considered various metrics like PSNR (Peak Signal to Noise Ratio), MSE (Mean Square Error) and SSIM (Structure Similarity Index Measure).
Performance characterization of stereo methods is mandatory to decide which algorithm is useful for which application. Prevalent benchmarks mainly use the root mean squared error (RMS) with respect to ground truth disparity maps to quantify algorithm performance. We show that the RMS is of limited expressiveness for algorithm selection and introduce the HCI Stereo Metrics. These metrics assess stereo results by harnessing three semantic cues: depth discontinuities, planar surfaces, and fine geometric structures. For each cue, we extract the relevant set of pixels from existing ground truth. We then apply our evaluation functions to quantify characteristics such as edge fattening and surface smoothness. We demonstrate that our approach supports practitioners in selecting the most suitable algorithm for their application. Using the new Middlebury dataset, we show that rankings based on our metrics reveal specific algorithm strengths and weaknesses which are not quantified by existing metrics. We finally show how stacked bar charts and radar charts visually support multidimensional performance evaluation. An interactive stereo benchmark based on the proposed metrics and visualizations is available at: http://hci.iwr.uni-heidelberg.de/stereometrics.
Massive MIMO and tight cooperation between transmission nodes are expected to become an integral part of a future 5G radio system. As part of an overall interference mitigation scheme substantial gains in coverage, spectral as well as energy efficiency have been reported. One of the main limitations for massive MIMO and coordinated multi-point (CoMP) systems is the aging of the channel state information at the transmitter (CSIT), which can be overcome partly by state of the art channel prediction techniques. For a clean slate 5G radio system, we propose to integrate channel prediction from the scratch in a flexible manner to benefit from future improvements in this area. As any prediction is unreliable by nature, further improvements over the state of the art are needed for a convincing solution. In this paper, we explain how the basic ingredients of 5G like base stations with massive MIMO antenna arrays, and multiple UE antennas can help to stretch today's limits with an approximately 10 dB lower normalized mean square error (NMSE) of the predicted channel. In combination with the novel introduced concept of artificially mutually coupled antennas, adding super-directivity gains to virtual beamforming, robust and accurate prediction over 10 ms with an NMSE of -20 dB up to 15 km/h at 2.6 GHz RF frequency could be achieved. This result has been achieved for measured channels without massive MIMO, but a comparison with ray-traced channels for the same scenario is provided as well.
Feedback loss can severely degrade the overall system performance, in addition, it can affect the control and computation of the Cyber-physical Systems (CPS). CPS hold enormous potential for a wide range of emerging applications including stochastic and time-critical traffic patterns. Stochastic data has a randomness in its nature which make a great challenge to maintain the real-time control whenever the data is lost. In this paper, we propose a data recovery scheme, called the Efficient Temporal and Spatial Data Recovery (ETSDR) scheme for stochastic incomplete feedback of CPS. In this scheme, we identify the temporal model based on the traffic patterns and consider the spatial effect of the nearest neighbor. Numerical results reveal that the proposed ETSDR outperforms both the weighted prediction (WP) and the exponentially weighted moving average (EWMA) algorithm regardless of the increment percentage of missing data in terms of the root mean square error, the mean absolute error, and the integral of absolute error.
A robust adaptive filtering algorithm based on the convex combination of two adaptive filters under the maximum correntropy criterion (MCC) is proposed. Compared with conventional minimum mean square error (MSE) criterion-based adaptive filtering algorithm, the MCC-based algorithm shows a better robustness against impulsive interference. However, its major drawback is the conflicting requirements between convergence speed and steady-state mean square error. In this letter, we use the convex combination method to overcome the tradeoff problem. Instead of minimizing the squared error to update the mixing parameter in conventional convex combination scheme, the method of maximizing the correntropy is introduced to make the proposed algorithm more robust against impulsive interference. Additionally, we report a novel weight transfer method to further improve the tracking performance. The good performance in terms of convergence rate and steady-state mean square error is demonstrated in plant identification scenarios that include impulsive interference and abrupt changes.
A new class of affine-projection-like (APL) adaptive-filtering algorithms is proposed. The new algorithms are obtained by eliminating the constraint of forcing the a posteriori error vector to zero in the affine-projection algorithm proposed by Ozeki and Umeda. In this way, direct or indirect inversion of the input signal matrix is not required and, consequently, the amount of computation required per iteration can be reduced. In addition, as demonstrated by extensive simulation results, the proposed algorithms offer reduced steady-state misalignment in system-identification, channel-equalization, and acoustic-echo-cancelation applications. A mean-square-error analysis of the proposed APL algorithms is also carried out and its accuracy is verified by using simulation results in a system-identification application.
Recent advances in adaptive filter theory and the hardware for signal acquisition have led to the realization that purely linear algorithms are often not adequate in these domains. Nonlinearities in the input space have become apparent with today's real world problems. Algorithms that process the data must keep pace with the advances in signal acquisition. Recently kernel adaptive (online) filtering algorithms have been proposed that make no assumptions regarding the linearity of the input space. Additionally, advances in wavelet data compression/dimension reduction have also led to new algorithms that are appropriate for producing a hybrid nonlinear filtering framework. In this paper we utilize a combination of wavelet dimension reduction and kernel adaptive filtering. We derive algorithms in which the dimension of the data is reduced by a wavelet transform. We follow this by kernel adaptive filtering algorithms on the reduced-domain data to find the appropriate model parameters demonstrating improved minimization of the mean-squared error (MSE). Another important feature of our methods is that the wavelet filter is also chosen based on the data, on-the-fly. In particular, it is shown that by using a few optimal wavelet coefficients from the constructed wavelet filter for both training and testing data sets as the input to the kernel adaptive filter, convergence to the near optimal learning curve (MSE) results. We demonstrate these algorithms on simulated and a real data set from food processing.
The electric network frequency (ENF) criterion is a recently developed technique for audio timestamp identification, which involves the matching between extracted ENF signal and reference data. For nearly a decade, conventional matching criterion has been based on the minimum mean squared error (MMSE) or maximum correlation coefficient. However, the corresponding performance is highly limited by low signal-to-noise ratio, short recording durations, frequency resolution problems, and so on. This paper presents a threshold-based dynamic matching algorithm (DMA), which is capable of autocorrecting the noise affected frequency estimates. The threshold is chosen according to the frequency resolution determined by the short-time Fourier transform (STFT) window size. A penalty coefficient is introduced to monitor the autocorrection process and finally determine the estimated timestamp. It is then shown that the DMA generalizes the conventional MMSE method. By considering the mainlobe width in the STFT caused by limited frequency resolution, the DMA achieves improved identification accuracy and robustness against higher levels of noise and the offset problem. Synthetic performance analysis and practical experimental results are provided to illustrate the advantages of the DMA.