Visible to the public Biblio

Filters: Keyword is MMSE  [Clear All Filters]
2017-02-21
K. Naruka, O. P. Sahu.  2015.  "An improved speech enhancement approach based on combination of compressed sensing and Kalman filter". 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). :1-5.

This paper reviews some existing Speech Enhancement techniques and also proposes a new method for enhancing the speech by combining Compressed Sensing and Kalman filter approaches. This approach is based on reconstruction of noisy speech signal using Compressive Sampling Matching Pursuit (CoSaMP) algorithm and further enhanced by Kalman filter. The performance of the proposed method is evaluated and compared with that of the existing techniques in terms of intelligibility and quality measure parameters of speech. The proposed algorithm shows an improved performance compared to Spectral Subtraction, MMSE, Wiener filter, Signal Subspace, Kalman filter in terms of WSS, LLR, SegSNR, SNRloss, PESQ and overall quality.

2015-05-01
Guang Hua, Goh, J., Thing, V.L.L..  2014.  A Dynamic Matching Algorithm for Audio Timestamp Identification Using the ENF Criterion. Information Forensics and Security, IEEE Transactions on. 9:1045-1055.

The electric network frequency (ENF) criterion is a recently developed technique for audio timestamp identification, which involves the matching between extracted ENF signal and reference data. For nearly a decade, conventional matching criterion has been based on the minimum mean squared error (MMSE) or maximum correlation coefficient. However, the corresponding performance is highly limited by low signal-to-noise ratio, short recording durations, frequency resolution problems, and so on. This paper presents a threshold-based dynamic matching algorithm (DMA), which is capable of autocorrecting the noise affected frequency estimates. The threshold is chosen according to the frequency resolution determined by the short-time Fourier transform (STFT) window size. A penalty coefficient is introduced to monitor the autocorrection process and finally determine the estimated timestamp. It is then shown that the DMA generalizes the conventional MMSE method. By considering the mainlobe width in the STFT caused by limited frequency resolution, the DMA achieves improved identification accuracy and robustness against higher levels of noise and the offset problem. Synthetic performance analysis and practical experimental results are provided to illustrate the advantages of the DMA.