Biblio
In recent years, almost all the real-world operations are transferred to cyber world and these market computers connect with each other via Internet. As a result of this, there is an increasing number of security breaches of the networks, whose admins cannot protect their networks from the all types of attacks. Although most of these attacks can be prevented with the use of firewalls, encryption mechanisms, access controls and some password protections mechanisms; due to the emergence of new type of attacks, a dynamic intrusion detection mechanism is always needed in the information security market. To enable the dynamicity of the Intrusion Detection System (IDS), it should be updated by using a modern learning mechanism. Neural Network approach is one of the mostly preferred algorithms for training the system. However, with the increasing power of parallel computing and use of big data for training, as a new concept, deep learning has been used in many of the modern real-world problems. Therefore, in this paper, we have proposed an IDS system which uses GPU powered Deep Learning Algorithms. The experimental results are collected on mostly preferred dataset KDD99 and it showed that use of GPU speed up training time up to 6.48 times depending on the number of the hidden layers and nodes in them. Additionally, we compare the different optimizers to enlighten the researcher to select the best one for their ongoing or future research.
Due to the recent technological development, home appliances and electric devices are equipped with high-performance hardware device. Since demand of hardware devices is increased, production base become internationalized to mass-produce hardware devices with low cost and hardware vendors outsource their products to third-party vendors. Accordingly, malicious third-party vendors can easily insert malfunctions (also known as "hardware Trojans'') into their products. In this paper, we design six kinds of hardware Trojans at a gate-level netlist, and apply a neural-network (NN) based hardware-Trojan detection method to them. The designed hardware Trojans are different in trigger circuits. In addition, we insert them to normal circuits, and detect hardware Trojans using a machine-learning-based hardware-Trojan detection method with neural networks. In our experiment, we learned Trojan-infected benchmarks using NN, and performed cross validation to evaluate the learned NN. The experimental results demonstrate that the average TPR (True Positive Rate) becomes 72.9%, the average TNR (True Negative Rate) becomes 90.0%.