Visible to the public Biblio

Filters: Keyword is sensitive applications  [Clear All Filters]
2019-11-26
Aiken, William, Kim, Hyoungshick, Ryoo, Jungwoo, Rosson, Mary Beth.  2018.  An Implementation and Evaluation of Progressive Authentication Using Multiple Level Pattern Locks. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1-6.

This paper presents a possible implementation of progressive authentication using the Android pattern lock. Our key idea is to use one pattern for two access levels to the device; an abridged pattern is used to access generic applications and a second, extended and higher-complexity pattern is used less frequently to access more sensitive applications. We conducted a user study of 89 participants and a consecutive user survey on those participants to investigate the usability of such a pattern scheme. Data from our prototype showed that for unlocking lowsecurity applications the median unlock times for users of the multiple pattern scheme and conventional pattern scheme were 2824 ms and 5589 ms respectively, and the distributions in the two groups differed significantly (Mann-Whitney U test, p-value less than 0.05, two-tailed). From our user survey, we did not find statistically significant differences between the two groups for their qualitative responses regarding usability and security (t-test, p-value greater than 0.05, two-tailed), but the groups did not differ by more than one satisfaction rating at 90% confidence.

2019-03-18
Condé, R. C. R., Maziero, C. A., Will, N. C..  2018.  Using Intel SGX to Protect Authentication Credentials in an Untrusted Operating System. 2018 IEEE Symposium on Computers and Communications (ISCC). :00158–00163.
An important principle in computational security is to reduce the attack surface, by maintaining the Trusted Computing Base (TCB) small. Even so, no security technique ensures full protection against any adversary. Thus, sensitive applications should be designed with several layers of protection so that, even if a layer might be violated, sensitive content will not be compromised. In 2015, Intel released the Software Guard Extensions (SGX) technology in its processors. This mechanism allows applications to allocate enclaves, which are private memory regions that can hold code and data. Other applications and even privileged code, like the OS kernel and the BIOS, are not able to access enclaves' contents. This paper presents a novel password file protection scheme, which uses Intel SGX to protect authentication credentials in the PAM authentication framework, commonly used in UNIX systems. We defined and implemented an SGX-enabled version of the pam\_unix.so authentication module, called UniSGX. This module uses an SGX enclave to handle the credentials informed by the user and to check them against the password file. To add an extra security layer, the password file is stored using SGX sealing. A threat model was proposed to assess the security of the proposed solution. The obtained results show that the proposed solution is secure against the threat model considered, and that its performance overhead is acceptable from the user point of view. The scheme presented here is also suitable to other authentication frameworks.