Visible to the public Biblio

Filters: Keyword is Quantum simulation  [Clear All Filters]
2022-03-14
Gustafson, Erik, Holzman, Burt, Kowalkowski, James, Lamm, Henry, Li, Andy C. Y., Perdue, Gabriel, Isakov, Sergei V., Martin, Orion, Thomson, Ross, Beall, Jackson et al..  2021.  Large scale multi-node simulations of ℤ2 gauge theory quantum circuits using Google Cloud Platform. 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS). :72—79.
Simulating quantum field theories on a quantum computer is one of the most exciting fundamental physics applications of quantum information science. Dynamical time evolution of quantum fields is a challenge that is beyond the capabilities of classical computing, but it can teach us important lessons about the fundamental fabric of space and time. Whether we may answer scientific questions of interest using near-term quantum computing hardware is an open question that requires a detailed simulation study of quantum noise. Here we present a large scale simulation study powered by a multi-node implementation of qsim using the Google Cloud Platform. We additionally employ newly-developed GPU capabilities in qsim and show how Tensor Processing Units — Application-specific Integrated Circuits (ASICs) specialized for Machine Learning — may be used to dramatically speed up the simulation of large quantum circuits. We demonstrate the use of high performance cloud computing for simulating ℤ2 quantum field theories on system sizes up to 36 qubits. We find this lattice size is not able to simulate our problem and observable combination with sufficient accuracy, implying more challenging observables of interest for this theory are likely beyond the reach of classical computation using exact circuit simulation.
2019-03-18
Almazrooie, Mishal, Abdullah, Rosni, Samsudin, Azman, Mutter, Kussay N..  2018.  Quantum Grover Attack on the Simplified-AES. Proceedings of the 2018 7th International Conference on Software and Computer Applications. :204–211.

In this work, a quantum design for the Simplified-Advanced Encryption Standard (S-AES) algorithm is presented. Also, a quantum Grover attack is modeled on the proposed quantum S-AES. First, quantum circuits for the main components of S-AES in the finite field F2[x]/(x4 + x + 1), are constructed. Then, the constructed circuits are put together to form a quantum version of S-AES. A C-NOT synthesis is used to decompose some of the functions to reduce the number of the needed qubits. The quantum S-AES is integrated into a black-box queried by Grover's algorithm. A new approach is proposed to uniquely recover the secret key when Grover attack is applied. The entire work is simulated and tested on a quantum mechanics simulator. The complexity analysis shows that a block cipher can be designed as a quantum circuit with a polynomial cost. In addition, the secret key is recovered in quadratic speedup as promised by Grover's algorithm.