Visible to the public Biblio

Filters: Keyword is security baseline  [Clear All Filters]
2020-07-27
Adetunji, Akinbobola Oluwaseun, Butakov, Sergey, Zavarsky, Pavol.  2018.  Automated Security Configuration Checklist for Apple iOS Devices Using SCAP v1.2. 2018 International Conference on Platform Technology and Service (PlatCon). :1–6.
The security content automation includes configurations of large number of systems, installation of patches securely, verification of security-related configuration settings, compliance with security policies and regulatory requirements, and ability to respond quickly when new threats are discovered [1]. Although humans are important in information security management, humans sometimes introduce errors and inconsistencies in an organization due to manual nature of their tasks [2]. Security Content Automation Protocol was developed by the U.S. NIST to automate information security management tasks such as vulnerability and patch management, and to achieve continuous monitoring of security configurations in an organization. In this paper, SCAP is employed to develop an automated security configuration checklist for use in verifying Apple iOS device configuration against the defined security baseline to enforce policy compliance in an enterprise.
2019-08-05
Ogundokun, A., Zavarsky, P., Swar, B..  2018.  Cybersecurity assurance control baselining for smart grid communication systems. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). :1–6.

Cybersecurity assurance plays an important role in managing trust in smart grid communication systems. In this paper, cybersecurity assurance controls for smart grid communication networks and devices are delineated from the more technical functional controls to provide insights on recent innovative risk-based approaches to cybersecurity assurance in smart grid systems. The cybersecurity assurance control baselining presented in this paper is based on requirements and guidelines of the new family of IEC 62443 standards on network and systems security of industrial automation and control systems. The paper illustrates how key cybersecurity control baselining and tailoring concepts of the U.S. NIST SP 800-53 can be adopted in smart grid security architecture. The paper outlines the application of IEC 62443 standards-based security zoning and assignment of security levels to the zones in smart grid system architectures. To manage trust in the smart grid system architecture, cybersecurity assurance base lining concepts are applied per security impact levels. Selection and justification of security assurance controls presented in the paper is utilizing the approach common in Security Technical Implementation Guides (STIGs) of the U.S. Defense Information Systems Agency. As shown in the paper, enhanced granularity for managing trust both on the overall system and subsystem levels of smart grid systems can be achieved by implementation of the instructions of the CNSSI 1253 of the U.S. Committee of National Security Systems on security categorization and control selection for national security systems.