Visible to the public Biblio

Filters: Keyword is J48  [Clear All Filters]
2022-01-31
Sandhu, Amandeep Kaur, Batth, Ranbir Singh.  2021.  A Hybrid approach to identify Software Reusable Components in Software Intelligence. 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM). :353–356.
Reusability is demarcated as the way of utilizing existing software components in software development. It plays a significant role in component-based software engineering. Extracting the components from the source code and checking the reusability factors is the most crucial part. Software Intelligence, a combination of data mining and artificial intelligence, helps to cope with the extraction and detection of reusability factor of the component. In this work prediction of reusability factor is considered. This paper proposes a hybrid PSO-NSGA III approach to detect whether the extracted component is reusable or not. The existing models lack in tuning the hyper parameters for prediction, which is considered in this work. The proposed approach was compared with four models, showing better outcomes in terms of performance metrics.
2020-03-23
Bahrani, Ala, Bidgly, Amir Jalaly.  2019.  Ransomware detection using process mining and classification algorithms. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :73–77.

The fast growing of ransomware attacks has become a serious threat for companies, governments and internet users, in recent years. The increasing of computing power, memory and etc. and the advance in cryptography has caused the complicating the ransomware attacks. Therefore, effective methods are required to deal with ransomwares. Although, there are many methods proposed for ransomware detection, but these methods are inefficient in detection ransomwares, and more researches are still required in this field. In this paper, we have proposed a novel method for identify ransomware from benign software using process mining methods. The proposed method uses process mining to discover the process model from the events logs, and then extracts features from this process model and using these features and classification algorithms to classify ransomwares. This paper shows that the use of classification algorithms along with the process mining can be suitable to identify ransomware. The accuracy and performance of our proposed method is evaluated using a study of 21 ransomware families and some benign samples. The results show j48 and random forest algorithms have the best accuracy in our method and can achieve to 95% accuracy in detecting ransomwares.

2020-02-26
Rahman, Obaid, Quraishi, Mohammad Ali Gauhar, Lung, Chung-Horng.  2019.  DDoS Attacks Detection and Mitigation in SDN Using Machine Learning. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:184–189.

Software Defined Networking (SDN) is very popular due to the benefits it provides such as scalability, flexibility, monitoring, and ease of innovation. However, it needs to be properly protected from security threats. One major attack that plagues the SDN network is the distributed denial-of-service (DDoS) attack. There are several approaches to prevent the DDoS attack in an SDN network. We have evaluated a few machine learning techniques, i.e., J48, Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (K-NN), to detect and block the DDoS attack in an SDN network. The evaluation process involved training and selecting the best model for the proposed network and applying it in a mitigation and prevention script to detect and mitigate attacks. The results showed that J48 performs better than the other evaluated algorithms, especially in terms of training and testing time.

2019-03-22
Teoh, T. T., Chiew, G., Franco, E. J., Ng, P. C., Benjamin, M. P., Goh, Y. J..  2018.  Anomaly Detection in Cyber Security Attacks on Networks Using MLP Deep Learning. 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). :1-5.

Malicious traffic has garnered more attention in recent years, owing to the rapid growth of information technology in today's world. In 2007 alone, an estimated loss of 13 billion dollars was made from malware attacks. Malware data in today's context is massive. To understand such information using primitive methods would be a tedious task. In this publication we demonstrate some of the most advanced deep learning techniques available, multilayer perceptron (MLP) and J48 (also known as C4.5 or ID3) on our selected dataset, Advanced Security Network Metrics & Non-Payload-Based Obfuscations (ASNM-NPBO) to show that the answer to managing cyber security threats lie in the fore-mentioned methodologies.