Ranieri, Angelo, Ruggiero, Andrea.
2022.
Complementary role of conversational agents in e-health services. 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE). :528–533.
In recent years, business environments are undergoing disruptive changes across sectors [1]. Globalization and technological advances, such as artificial intelligence and the internet of things, have completely redesigned business activities, bringing to light an ever-increasing interest and attention towards the customer [2], especially in healthcare sector. In this context, researchers is paying more and more attention to the introduction of new technologies capable of meeting the patients’ needs [3, 4] and the Covid-19 pandemic has contributed and still contributes to accelerate this phenomenon [5]. Therefore, emerging technologies (i.e., AI-enabled solutions, service robots, conversational agents) are proving to be effective partners in improving medical care and quality of life [6]. Conversational agents, often identified in other ways as “chatbots”, are AI-enabled service robots based on the use of text [7] and capable of interpreting natural language and ensuring automation of responses by emulating human behavior [8, 9, 10]. Their introduction is linked to help institutions and doctors in the management of their patients [11, 12], at the same time maintaining the negligible incremental costs thanks to their virtual aspect [13–14]. However, while the utilization of these tools has significantly increased during the pandemic [15, 16, 17], it is unclear what benefits they bring to service delivery. In order to identify their contributions, there is a need to find out which activities can be supported by conversational agents.This paper takes a grounded approach [18] to achieve contextual understanding design and to effectively interpret the context and meanings related to conversational agents in healthcare interactions. The study context concerns six chatbots adopted in the healthcare sector through semi-structured interviews conducted in the health ecosystem. Secondary data relating to these tools under consideration are also used to complete the picture on them. Observation, interviewing and archival documents [19] could be used in qualitative research to make comparisons and obtain enriched results due to the opportunity to bridge the weaknesses of one source by compensating it with the strengths of others. Conversational agents automate customer interactions with smart meaningful interactions powered by Artificial Intelligence, making support, information provision and contextual understanding scalable. They help doctors to conduct the conversations that matter with their patients. In this context, conversational agents play a critical role in making relevant healthcare information accessible to the right stakeholders at the right time, defining an ever-present accessible solution for patients’ needs. In summary, conversational agents cannot replace the role of doctors but help them to manage patients. By conveying constant presence and fast information, they help doctors to build close relationships and trust with patients.
Raavi, Rupendra, Alqarni, Mansour, Hung, Patrick C.K.
2022.
Implementation of Machine Learning for CAPTCHAs Authentication Using Facial Recognition. 2022 IEEE International Conference on Data Science and Information System (ICDSIS). :1–5.
Web-based technologies are evolving day by day and becoming more interactive and secure. Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is one of the security features that help detect automated bots on the Web. Earlier captcha was complex designed text-based, but some optical recognition-based algorithms can be used to crack it. That is why now the captcha system is image-based. But after the arrival of strong image recognition algorithms, image-based captchas can also be cracked nowadays. In this paper, we propose a new captcha system that can be used to differentiate real humans and bots on the Web. We use advanced deep layers with pre-trained machine learning models for captchas authentication using a facial recognition system.
Umar, Mohammad, Ayyub, Shaheen.
2022.
Intrinsic Decision based Situation Reaction CAPTCHA for Better Turing Test. 2022 International Conference on Industry 4.0 Technology (I4Tech). :1–6.
In this modern era, web security is often required to beware from fraudulent activities. There are several hackers try to build a program that can interact with web pages automatically and try to breach the data or make several junk entries due to that web servers get hanged. To stop the junk entries; CAPTCHA is a solution through which bots can be identified and denied the machine based program to intervene with. CAPTCHA stands for Completely Automated Public Turing test to tell Computers and Humans Apart. In the progression of CAPTCHA; there are several methods available such as distorted text, picture recognition, math solving and gaming based CAPTCHA. Game based turing test is very much popular now a day but there are several methods through which game can be cracked because game is not intellectual. So, there is a required of intrinsic CAPTCHA. The proposed system is based on Intrinsic Decision based Situation Reaction Challenge. The proposed system is able to better classify the humans and bots by its intrinsic problem. It has been considered as human is more capable to deal with the real life problems and machine is bit poor to understand the situation or how the problem can be solved. So, proposed system challenges with simple situations which is easier for human but almost impossible for bots. Human is required to use his common sense only and problem can be solved with few seconds.
Rebolledo-Mendez, Jovan D, Tonatiuh Gomez Briones, Felix A., Gonzalez Cardona, Leslie G.
2022.
Legal Artificial Assistance Agent to Assist Refugees. 2022 IEEE International Conference on Big Data (Big Data). :5126–5128.
Populations move across regions in search of better living possibilities, better life outcomes or going away from problems that affected their lives in the previous region they lived in. In the United States of America, this problem has been happening over decades. Intelligent Conversational Text-based Agents, also called Chatbots, and Artificial Intelligence are increasingly present in our lives and over recent years, their presence has increased considerably, due to the usability cases and the familiarity they are wining constantly. Using NLP algorithms for law in accessible platforms allows scaling of users to access a certain level of law expert who could assist users in need. This paper describes the motivation and circumstances of this problem as well as the description of the development of an Intelligent Conversational Agent system that was used by immigrants in the USA so they could get answers to questions and get suggestions about better legal options they could have access to. This system has helped thousands of people, especially in California
Bennet, Ms. Deepthi Tabitha, Bennet, Ms. Preethi Samantha, Anitha, D.
2022.
Securing Smart City Networks - Intelligent Detection Of DDoS Cyber Attacks. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :1575–1580.
A distributed denial-of-service (DDoS) is a malicious attempt by attackers to disrupt the normal traffic of a targeted server, service or network. This is done by overwhelming the target and its surrounding infrastructure with a flood of Internet traffic. The multiple compromised computer systems (bots or zombies) then act as sources of attack traffic. Exploited machines can include computers and other network resources such as IoT devices. The attack results in either degraded network performance or a total service outage of critical infrastructure. This can lead to heavy financial losses and reputational damage. These attacks maximise effectiveness by controlling the affected systems remotely and establishing a network of bots called bot networks. It is very difficult to separate the attack traffic from normal traffic. Early detection is essential for successful mitigation of the attack, which gives rise to a very important role in cybersecurity to detect the attacks and mitigate the effects. This can be done by deploying machine learning or deep learning models to monitor the traffic data. We propose using various machine learning and deep learning algorithms to analyse the traffic patterns and separate malicious traffic from normal traffic. Two suitable datasets have been identified (DDoS attack SDN dataset and CICDDoS2019 dataset). All essential preprocessing is performed on both datasets. Feature selection is also performed before detection techniques are applied. 8 different Neural Networks/ Ensemble/ Machine Learning models are chosen and the datasets are analysed. The best model is chosen based on the performance metrics (DEEP NEURAL NETWORK MODEL). An alternative is also suggested (Next best - Hypermodel). Optimisation by Hyperparameter tuning further enhances the accuracy. Based on the nature of the attack and the intended target, suitable mitigation procedures can then be deployed.