Visible to the public Biblio

Filters: Keyword is certificate management problem  [Clear All Filters]
2020-03-18
Yang, Xiaodong, Chen, Guilan, Wang, Meiding, Pei, Xizhen.  2019.  Lightweight Searchable Encryption Scheme Based on Certificateless Cryptosystem. 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :669–6693.
Searchable encryption technology can guarantee the confidentiality of cloud data and the searchability of ciphertext data, which has a very broad application prospect in cloud storage environments. However, most existing searchable encryption schemes have problems, such as excessive computational overhead and low security. In order to solve these problems, a lightweight searchable encryption scheme based on certificateless cryptosystem is proposed. The user's final private key consists of partial private key and secret value, which effectively solves the certificate management problem of the traditional cryptosystem and the key escrow problem of identity-based cryptosystem. At the same time, the introduction of third-party manager has significantly reduced the burden in the cloud server and achieved lightweight multi-user ciphertext retrieval. In addition, the data owner stores the file index in the third-party manager, while the file ciphertext is stored in the cloud server. This ensures that the file index is not known by the cloud server. The analysis results show that the scheme satisfies trapdoor indistinguishability and can resist keyword guessing attacks. Compared with similar certificateless encryption schemes, it has higher computational performance in key generation, keyword encryption, trapdoor generation and keyword search.
2015-05-01
Hongzhen Du, Qiaoyan Wen.  2014.  Security analysis of two certificateless short signature schemes. Information Security, IET. 8:230-233.

Certificateless public key cryptography (CL-PKC) combines the advantage of both traditional PKC and identity-based cryptography (IBC) as it eliminates the certificate management problem in traditional PKC and resolves the key escrow problem in IBC. Recently, Choi et al. and Tso et al.proposed two different efficient CL short signature schemes and claimed that the two schemes are secure against super adversaries and satisfy the strongest security. In this study, the authors show that both Choi et al.'s scheme and Tso et al.'s scheme are insecure against the strong adversaries who can replace users' public keys and have access to the signing oracle under the replaced public keys.