Biblio
The risk of large-scale blackouts and cascading failures in power grids can be due to vulnerable transmission lines and lack of proper remediation techniques after recognizing the first failure. In this paper, we assess the vulnerability of a system using fault chain theory and a power flow-based method, and calculate the probability of large-scale blackout. Further, we consider a Remedial Action Scheme (RAS) to reduce the vulnerability of the system and to harden the critical components against intentional attacks. To identify the most critical lines more efficiently, a new vulnerability index is presented. The effectiveness of the new index and the impact of the applied RAS is illustrated on the IEEE 14-bus test system.
The identification of transmission sections is used to improve the efficiency of monitoring the operation of the power grid. In order to test the validity of transmission sections identified, an assessment process is necessary. In addition, Transmission betweenness, an index for finding the key transmission lines in the power grid, should also be verified. In this paper, chain attack is assumed to check the weak links in the grid, thus verifying the transmission betweenness implemented for the system. Moreover, the line outage distribution factors (LODFs) are used to quantify the change of power flow when the leading line in transmission sections breaks down, so that the validity of transmission sections can be proved. Case studies based on IEEE 39 and IEEE 118 -bus system proved the effectiveness of the proposed method.