Visible to the public Biblio

Filters: Keyword is cloud-assisted interactions  [Clear All Filters]
2019-04-05
Konorski, J..  2018.  Double-Blind Reputation vs. Intelligent Fake VIP Attacks in Cloud-Assisted Interactions. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1637-1641.

We consider a generic model of Client-Server interactions in the presence of Sender and Relay, conceptual agents acting on behalf of Client and Server, respectively, and modeling cloud service providers in the envisaged "QoS as a Service paradigm". Client generates objects which Sender tags with demanded QoS level, whereas Relay assigns the QoS level to be provided at Server. To verify an object's right to a QoS level, Relay detects its signature that neither Client nor Sender can modify. Since signature detection is costly, Relay tends to occasionally skip it and trust an object; this prompts Sender to occasionally launch a Fake VIP attack, i.e., demand undue QoS level. In a Stackelberg game setting, Relay employs a trust strategy in the form of a double-blind reputation scheme so as to minimize the signature detection cost and undue QoS provision, anticipating a best-response Fake VIP attack strategy on the part of Sender. We ask whether the double-blind reputation scheme, previously proved resilient to a probabilistic Fake VIP attack strategy, is equally resilient to more intelligent Sender behavior. Two intelligent attack strategies are proposed and analyzed using two-dimensional Markov chains.