Visible to the public Biblio

Filters: Keyword is ARP Spoofing  [Clear All Filters]
2023-03-03
Khant, Shailesh, Patel, Atul, Patel, Sanskruti, Ganatra, Nilay, Patel, Rachana.  2022.  Cyber Security Actionable Education during COVID19 Third Wave in India. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :274–278.
Still in many countries COVID19 virus is changing its structure and creating damages in terms of economy and education. In India during the period of January 2022 third wave is on its high peak. Many colleges and schools are still forced to teach online. This paper describes how cyber security actionable or practical fundamental were taught by school or college teachers. Various cyber security tools are used to explain the actionable insight of the subject. Main Topics or concepts covered are MITM (Man In the Middle Attack) using ethercap tool in Kali Linux, spoofing methods like ARP (Address Resolution Protocol) spoofing and DNS (Domain Name System) spoofing, network intrusion detection using snort , finding information about packets using wireshark tool and other tools like nmap and netcat for finding the vulnerability. Even brief details were given about how to crack password using wireshark.
2021-02-23
Khan, M., Rehman, O., Rahman, I. M. H., Ali, S..  2020.  Lightweight Testbed for Cybersecurity Experiments in SCADA-based Systems. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—5.

A rapid rise in cyber-attacks on Cyber Physical Systems (CPS) has been observed in the last decade. It becomes even more concerning that several of these attacks were on critical infrastructures that indeed succeeded and resulted into significant physical and financial damages. Experimental testbeds capable of providing flexible, scalable and interoperable platform for executing various cybersecurity experiments is highly in need by all stakeholders. A container-based SCADA testbed is presented in this work as a potential platform for executing cybersecurity experiments. Through this testbed, a network traffic containing ARP spoofing is generated that represents a Man in the middle (MITM) attack. While doing so, scanning of different systems within the network is performed which represents a reconnaissance attack. The network traffic generated by both ARP spoofing and network scanning are captured and further used for preparing a dataset. The dataset is utilized for training a network classification model through a machine learning algorithm. Performance of the trained model is evaluated through a series of tests where promising results are obtained.

2020-10-05
Scott-Hayward, Sandra, Arumugam, Thianantha.  2018.  OFMTL-SEC: State-based Security for Software Defined Networks. 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–7.
Dynamic network security services have been proposed exploiting the benefits of Software Defined Networking (SDN) and Network Functions Virtualization (NFV) technologies. However, many of these services rely on controller interaction, which presents a performance and scalability challenge, and a threat vector. To overcome the performance issue, stateful data-plane designs have been proposed. Unfortunately, these solutions do not offer protection from attacks that exploit the SDN implementation of network functions such as topology and path update, or services such as the Address Resolution Protocol (ARP). In this work, we propose state-based SDN security protection mechanisms. Our stateful security data plane solution, OFMTL-SEC, is designed to provide protection against attacks on SDN and traditional network services. Specifically, we present a novel data plane protection against configuration-based attacks in SDN and against ARP spoofing. OFMTL-SEC is compared with the state-of-the-art solutions and offers increased security to SDNs with negligible performance impact.
2019-05-01
Naik, N., Shang, C., Shen, Q., Jenkins, P..  2018.  Vigilant Dynamic Honeypot Assisted by Dynamic Fuzzy Rule Interpolation. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :1731–1738.

Dynamic Fuzzy Rule Interpolation (D-FRI) offers a dynamic rule base for fuzzy systems which is especially useful for systems with changing requirements and limited prior knowledge. This suggests a possible application of D-FRI in the area of network security due to the volatility of the traffic. A honeypot is a valuable tool in the field of network security for baiting attackers and collecting their information. However, typically designed with fewer resources they are not considered as a primary security tool for use in network security. Consequently, such honeypots can be vulnerable to many security attacks. One such attack is a spoofing attack which can cause severe damage to the honeypot, making it inefficient. This paper presents a vigilant dynamic honeypot based on the D-FRI approach for use in predicting and alerting of spoofing attacks on the honeypot. First, it proposes a technique for spoofing attack identification based on the analysis of simulated attack data. Then, the paper employs the identification technique to develop a D-FRI based vigilant dynamic honeypot, allowing the honeypot to predict and alert that a spoofing attack is taking place in the absence of matching rules. The resulting system is capable of learning and maintaining a dynamic rule base for more accurate identification of potential spoofing attacks with respect to the changing traffic conditions of the network.