Visible to the public Biblio

Filters: Keyword is electricity grids  [Clear All Filters]
2019-06-24
Chouikhi, S., Merghem-Boulahia, L., Esseghir, M..  2018.  Energy Demand Scheduling Based on Game Theory for Microgrids. 2018 IEEE International Conference on Communications (ICC). :1–6.

The advent of smart grids offers us the opportunity to better manage the electricity grids. One of the most interesting challenges in the modern grids is the consumer demand management. Indeed, the development in Information and Communication Technologies (ICTs) encourages the development of demand-side management systems. In this paper, we propose a distributed energy demand scheduling approach that uses minimal interactions between consumers to optimize the energy demand. We formulate the consumption scheduling as a constrained optimization problem and use game theory to solve this problem. On one hand, the proposed approach aims to reduce the total energy cost of a building's consumers. This imposes the cooperation between all the consumers to achieve the collective goal. On the other hand, the privacy of each user must be protected, which means that our distributed approach must operate with a minimal information exchange. The performance evaluation shows that the proposed approach reduces the total energy cost, each consumer's individual cost, as well as the peak to average ratio.

2019-05-01
Konstantelos, I., Jamgotchian, G., Tindemans, S., Duchesne, P., Cole, S., Merckx, C., Strbac, G., Panciatici, P..  2018.  Implementation of a Massively Parallel Dynamic Security Assessment Platform for Large-Scale Grids. 2018 IEEE Power Energy Society General Meeting (PESGM). :1–1.

This paper presents a computational platform for dynamic security assessment (DSA) of large electricity grids, developed as part of the iTesla project. It leverages High Performance Computing (HPC) to analyze large power systems, with many scenarios and possible contingencies, thus paving the way for pan-European operational stability analysis. The results of the DSA are summarized by decision trees of 11 stability indicators. The platform's workflow and parallel implementation architecture is described in detail, including the way commercial tools are integrated into a plug-in architecture. A case study of the French grid is presented, with over 8000 scenarios and 1980 contingencies. Performance data of the case study (using 10,000 parallel cores) is analyzed, including task timings and data flows. Finally, the generated decision trees are compared with test data to quantify the functional performance of the DSA platform.