Biblio
With the advent of Industry 4.0, the Internet of Things (IoT) and Artificial Intelligence (AI), smart entities are now able to read the minds of users via extracting cognitive patterns from electroencephalogram (EEG) signals. Such brain data may include users' experiences, emotions, motivations, and other previously private mental and psychological processes. Accordingly, users' cognitive privacy may be violated and the right to cognitive privacy should protect individuals against the unconsented intrusion by third parties into the brain data as well as against the unauthorized collection of those data. This has caused a growing concern among users and industry experts that laws to protect the right to cognitive liberty, right to mental privacy, right to mental integrity, and the right to psychological continuity. In this paper, we propose an AI-enabled EEG model, namely Cognitive Privacy, that aims to protect data and classifies users and their tasks from EEG data. We present a model that protects data from disclosure using normalized correlation analysis and classifies subjects (i.e., a multi-classification problem) and their tasks (i.e., eye open and eye close as a binary classification problem) using a long-short term memory (LSTM) deep learning approach. The model has been evaluated using the EEG data set of PhysioNet BCI, and the results have revealed its high performance of classifying users and their tasks with achieving high data privacy.
Studying human brain signals has always gathered great attention from the scientific community. In Brain Computer Interface (BCI) research, for example, changes of brain signals in relation to specific tasks (e.g., thinking something) are detected and used to control machines. While extracting spatio-temporal cues from brain signals for classifying state of human mind is an explored path, decoding and visualizing brain states is new and futuristic. Following this latter direction, in this paper, we propose an approach that is able not only to read the mind, but also to decode and visualize human thoughts. More specifically, we analyze brain activity, recorded by an ElectroEncephaloGram (EEG), of a subject while thinking about a digit, character or an object and synthesize visually the thought item. To accomplish this, we leverage the recent progress of adversarial learning by devising a conditional Generative Adversarial Network (GAN), which takes, as input, encoded EEG signals and generates corresponding images. In addition, since collecting large EEG signals in not trivial, our GAN model allows for learning distributions with limited training data. Performance analysis carried out on three different datasets – brain signals of multiple subjects thinking digits, characters, and objects – show that our approach is able to effectively generate images from thoughts of a person. They also demonstrate that EEG signals encode explicitly cues from thoughts which can be effectively used for generating semantically relevant visualizations.