Biblio
This paper describes biometric-based cryptographic techniques for providing confidential communications and strong, mutual and multifactor authentication on the Internet of Things. The described security techniques support the goals of universal access when users are allowed to select from multiple choice alternatives to authenticate their identities. By using a Biometric Authenticated Key Exchange (BAKE) protocol, user credentials are protected against phishing and Man-in-the-Middle attacks. Forward secrecy is achieved using a Diffie-Hellman key establishment scheme with fresh random values each time the BAKE protocol is operated. Confidentiality is achieved using lightweight cryptographic algorithms that are well suited for implementation in resource constrained environments, those limited by processing speed, limited memory and power availability. Lightweight cryptography can offer strong confidentiality solutions that are practical to implement in Internet of Things systems, where efficient execution, and small memory requirements and code size are required.
Wireless channel reciprocity can be successfully exploited as a common source of randomness for the generation of a secret key by two legitimate users willing to achieve confidential communications over a public channel. This paper presents an analytical framework to investigate the theoretical limits of secret-key generation when wireless multi-dimensional Gaussian channels are used as source of randomness. The intrinsic secrecy content of wide-sense stationary wireless channels in frequency, time and spatial domains is derived through asymptotic analysis as the number of observations in a given domain tends to infinity. Some significant case studies are presented where single and multiple antenna eavesdroppers are considered. In the numerical results, the role of signal-to-noise ratio, spatial correlation, frequency and time selectivity is investigated.