Visible to the public Biblio

Filters: Keyword is digital image forensics  [Clear All Filters]
2021-04-08
Boato, G., Dang-Nguyen, D., Natale, F. G. B. De.  2020.  Morphological Filter Detector for Image Forensics Applications. IEEE Access. 8:13549—13560.
Mathematical morphology provides a large set of powerful non-linear image operators, widely used for feature extraction, noise removal or image enhancement. Although morphological filters might be used to remove artifacts produced by image manipulations, both on binary and gray level documents, little effort has been spent towards their forensic identification. In this paper we propose a non-trivial extension of a deterministic approach originally detecting erosion and dilation of binary images. The proposed approach operates on grayscale images and is robust to image compression and other typical attacks. When the image is attacked the method looses its deterministic nature and uses a properly trained SVM classifier, using the original detector as a feature extractor. Extensive tests demonstrate that the proposed method guarantees very high accuracy in filtering detection, providing 100% accuracy in discriminating the presence and the type of morphological filter in raw images of three different datasets. The achieved accuracy is also good after JPEG compression, equal or above 76.8% on all datasets for quality factors above 80. The proposed approach is also able to determine the adopted structuring element for moderate compression factors. Finally, it is robust against noise addition and it can distinguish morphological filter from other filters.
Zheng, Y., Cao, Y., Chang, C..  2020.  A PUF-Based Data-Device Hash for Tampered Image Detection and Source Camera Identification. IEEE Transactions on Information Forensics and Security. 15:620—634.
With the increasing prevalent of digital devices and their abuse for digital content creation, forgeries of digital images and video footage are more rampant than ever. Digital forensics is challenged into seeking advanced technologies for forgery content detection and acquisition device identification. Unfortunately, existing solutions that address image tampering problems fail to identify the device that produces the images or footage while techniques that can identify the camera is incapable of locating the tampered content of its captured images. In this paper, a new perceptual data-device hash is proposed to locate maliciously tampered image regions and identify the source camera of the received image data as a non-repudiable attestation in digital forensics. The presented image may have been either tampered or gone through benign content preserving geometric transforms or image processing operations. The proposed image hash is generated by projecting the invariant image features into a physical unclonable function (PUF)-defined Bernoulli random space. The tamper-resistant random PUF response is unique for each camera and can only be generated upon triggered by a challenge, which is provided by the image acquisition timestamp. The proposed hash is evaluated on the modified CASIA database and CMOS image sensor-based PUF simulated using 180 nm TSMC technology. It achieves a high tamper detection rate of 95.42% with the regions of tampered content successfully located, a good authentication performance of above 98.5% against standard content-preserving manipulations, and 96.25% and 90.42%, respectively, for the more challenging geometric transformations of rotation (0 360°) and scaling (scale factor in each dimension: 0.5). It is demonstrated to be able to identify the source camera with 100% accuracy and is secure against attacks on PUF.
Verdoliva, L..  2020.  Media Forensics and DeepFakes: An Overview. IEEE Journal of Selected Topics in Signal Processing. 14:910—932.
With the rapid progress in recent years, techniques that generate and manipulate multimedia content can now provide a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, and video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. These can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Therefore, there is an urgent need for automated tools capable of detecting false multimedia content and avoiding the spread of dangerous false information. This review paper aims to present an analysis of the methods for visual media integrity verification, that is, the detection of manipulated images and videos. Special emphasis will be placed on the emerging phenomenon of deepfakes, fake media created through deep learning tools, and on modern data-driven forensic methods to fight them. The analysis will help highlight the limits of current forensic tools, the most relevant issues, the upcoming challenges, and suggest future directions for research.
2020-03-30
Bharati, Aparna, Moreira, Daniel, Brogan, Joel, Hale, Patricia, Bowyer, Kevin, Flynn, Patrick, Rocha, Anderson, Scheirer, Walter.  2019.  Beyond Pixels: Image Provenance Analysis Leveraging Metadata. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). :1692–1702.
Creative works, whether paintings or memes, follow unique journeys that result in their final form. Understanding these journeys, a process known as "provenance analysis," provides rich insights into the use, motivation, and authenticity underlying any given work. The application of this type of study to the expanse of unregulated content on the Internet is what we consider in this paper. Provenance analysis provides a snapshot of the chronology and validity of content as it is uploaded, re-uploaded, and modified over time. Although still in its infancy, automated provenance analysis for online multimedia is already being applied to different types of content. Most current works seek to build provenance graphs based on the shared content between images or videos. This can be a computationally expensive task, especially when considering the vast influx of content that the Internet sees every day. Utilizing non-content-based information, such as timestamps, geotags, and camera IDs can help provide important insights into the path a particular image or video has traveled during its time on the Internet without large computational overhead. This paper tests the scope and applicability of metadata-based inferences for provenance graph construction in two different scenarios: digital image forensics and cultural analytics.
2019-05-08
Makrushin, Andrey, Kraetzer, Christian, Neubert, Tom, Dittmann, Jana.  2018.  Generalized Benford's Law for Blind Detection of Morphed Face Images. Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. :49–54.
A morphed face image in a photo ID is a serious threat to image-based user verification enabling that multiple persons could be matched with the same document. The application of machine-readable travel documents (MRTD) at automated border control (ABC) gates is an example of a verification scenario that is very sensitive to this kind of fraud. Detection of morphed face images prior to face matching is, therefore, indispensable for effective border security. We introduce the face morphing detection approach based on fitting a logarithmic curve to nine Benford features extracted from quantized DCT coefficients of JPEG compressed original and morphed face images. We separately study the parameters of the logarithmic curve in face and background regions to establish the traces imposed by the morphing process. The evaluation results show that a single parameter of the logarithmic curve may be sufficient to clearly separate morphed and original images.