Visible to the public Biblio

Filters: Keyword is cloud computing security  [Clear All Filters]
2019-10-22
Li, Ling, An, Xiaoguang.  2018.  Research on Storage Mechanism of Cloud Security Policy. 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :130–133.
Cloud computing, cloud security and cloud storage have been gradually introduced into people's life and become hot topicsof research, for which relevant technologies have permeated through the computer industry and relevant industries. With the coming of the modern information society, secure storage of data has been becoming increasingly important. Proceeding from traditional policy storage, this paper includes comparison and improvement of policy storage for the purpose of meeting requirements of storage of cloud security policy. Policy storage technology refers to a technology used to realize storage of policies created by users and relevant policy information. Policy repository can conduct centralized management and processing of multiple policies and their relevant information. At present, popular policy repositories generally include policy storage for relational database or policy storage for directory server or a file in a fixed format, such as XML file format.
2019-06-28
Dixit, Vaibhav Hemant, Doupé, Adam, Shoshitaishvili, Yan, Zhao, Ziming, Ahn, Gail-Joon.  2018.  AIM-SDN: Attacking Information Mismanagement in SDN-Datastores. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :664-676.

Network Management is a critical process for an enterprise to configure and monitor the network devices using cost effective methods. It is imperative for it to be robust and free from adversarial or accidental security flaws. With the advent of cloud computing and increasing demands for centralized network control, conventional management protocols like SNMP appear inadequate and newer techniques like NMDA and NETCONF have been invented. However, unlike SNMP which underwent improvements concentrating on security, the new data management and storage techniques have not been scrutinized for the inherent security flaws. In this paper, we identify several vulnerabilities in the widely used critical infrastructures which leverage the Network Management Datastore Architecture design (NMDA). Software Defined Networking (SDN), a proponent of NMDA, heavily relies on its datastores to program and manage the network. We base our research on the security challenges put forth by the existing datastore's design as implemented by the SDN controllers. The vulnerabilities identified in this work have a direct impact on the controllers like OpenDayLight, Open Network Operating System and their proprietary implementations (by CISCO, Ericsson, RedHat, Brocade, Juniper, etc). Using our threat detection methodology, we demonstrate how the NMDA-based implementations are vulnerable to attacks which compromise availability, integrity, and confidentiality of the network. We finally propose defense measures to address the security threats in the existing design and discuss the challenges faced while employing these countermeasures.

2019-03-28
Chen, J., Xu, R., Li, C..  2018.  Research of Security Situational Awareness and Visualization Approach in Cloud Computing. 2018 International Conference on Networking and Network Applications (NaNA). :201-205.
Cloud computing is an innovative mechanism to optimize computing and storage resource utilization. Due to its cost-saving, high-efficiency advantage, the technology receives wide adoption from IT industries. However, the frequent emergences of security events become the heaviest obstacle for its advancement. The multi-layer and distributive characteristics of cloud computing make IT admins compulsively collect all necessary situational information at cloud runtime if they want to grasp the panoramic secure state, hereby practice configuration management and emergency response methods when necessary. On the other hand, technologies such as elastic resource pooling, dynamic load balancing and virtual machine real-time migration complicate the difficulty of data gathering, where secure information may come from virtual machine hypervisor, network accounting or host monitor proxies. How to classify, arrange, standardize and visualize these data turns into the most crucial issue for cloud computing security situation awareness and presentation. This dissertation borrows traditional fashion of data visualization to integrate into cloud computing features, proposes a new method for aggregating and displaying secure information which IT admins concern, and expects that by method realization cloud security monitor/management capabilities could be notably enhanced.
2018-01-10
Aissaoui, K., idar, H. Ait, Belhadaoui, H., Rifi, M..  2017.  Survey on data remanence in Cloud Computing environment. 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). :1–4.

The Cloud Computing is a developing IT concept that faces some issues, which are slowing down its evolution and adoption by users across the world. The lack of security has been the main concern. Organizations and entities need to ensure, inter alia, the integrity and confidentiality of their outsourced sensible data within a cloud provider server. Solutions have been examined in order to strengthen security models (strong authentication, encryption and fragmentation before storing, access control policies...). More particularly, data remanence is undoubtedly a major threat. How could we be sure that data are, when is requested, truly and appropriately deleted from remote servers? In this paper, we aim to produce a survey about this interesting subject and to address the problem of residual data in a cloud-computing environment, which is characterized by the use of virtual machines instantiated in remote servers owned by a third party.

2017-05-22
Ramokapane, Kopo M., Rashid, Awais, Such, Jose M..  2016.  Assured Deletion in the Cloud: Requirements, Challenges and Future Directions. Proceedings of the 2016 ACM on Cloud Computing Security Workshop. :97–108.

Inadvertent exposure of sensitive data is a major concern for potential cloud customers. Much focus has been on other data leakage vectors, such as side channel attacks, while issues of data disposal and assured deletion have not received enough attention to date. However, data that is not properly destroyed may lead to unintended disclosures, in turn, resulting in heavy financial penalties and reputational damage. In non-cloud contexts, issues of incomplete deletion are well understood. To the best of our knowledge, to date, there has been no systematic analysis of assured deletion challenges in public clouds. In this paper, we aim to address this gap by analysing assured deletion requirements for the cloud, identifying cloud features that pose a threat to assured deletion, and describing various assured deletion challenges. Based on this discussion, we identify future challenges for research in this area and propose an initial assured deletion architecture for cloud settings. Altogether, our work offers a systematization of requirements and challenges of assured deletion in the cloud, and a well-founded reference point for future research in developing new solutions to assured deletion.

2017-03-29
Stan, Oana, Carpov, Sergiu, Sirdey, Renaud.  2016.  Dynamic Execution of Secure Queries over Homomorphic Encrypted Databases. Proceedings of the 4th ACM International Workshop on Security in Cloud Computing. :51–58.

The wide use of cloud computing and of data outsourcing rises important concerns with regards to data security resulting thus in the necessity of protection mechanisms such as encryption of sensitive data. The recent major theoretical breakthrough of finding the Holy Grail of encryption, i.e. fully homomorphic encryption guarantees the privacy of queries and their results on encrypted data. However, there are only a few studies proposing a practical performance evaluation of the use of homomorphic encryption schemes in order to perform database queries. In this paper, we propose and analyse in the context of a secure framework for a generic database query interpreter two different methods in which client requests are dynamically executed on homomorphically encrypted data. Dynamic compilation of the requests allows to take advantage of the different optimizations performed during an off-line step on an intermediate code representation, taking the form of boolean circuits, and, moreover, to specialize the execution using runtime information. Also, for the returned encrypted results, we assess the complexity and the efficiency of the different protocols proposed in the literature in terms of overall execution time, accuracy and communication overhead.

2015-05-06
Ahmad, A., Hassan, M.M., Aziz, A..  2014.  A Multi-token Authorization Strategy for Secure Mobile Cloud Computing. Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014 2nd IEEE International Conference on. :136-141.

Cloud computing is an emerging paradigm shifting the shape of computing models from being a technology to a utility. However, security, privacy and trust are amongst the issues that can subvert the benefits and hence wide deployment of cloud computing. With the introduction of omnipresent mobile-based clients, the ubiquity of the model increases, suggesting a still higher integration in life. Nonetheless, the security issues rise to a higher degree as well. The constrained input methods for credentials and the vulnerable wireless communication links are among factors giving rise to serious security issues. To strengthen the access control of cloud resources, organizations now commonly acquire Identity Management Systems (IdM). This paper presents that the most popular IdM, namely OAuth, working in scope of Mobile Cloud Computing has many weaknesses in authorization architecture. In particular, authors find two major issues in current IdM. First, if the IdM System is compromised through malicious code, it allows a hacker to get authorization of all the protected resources hosted on a cloud. Second, all the communication links among client, cloud and IdM carries complete authorization token, that can allow hacker, through traffic interception at any communication link, an illegitimate access of protected resources. We also suggest a solution to the reported problems, and justify our arguments with experimentation and mathematical modeling.

2015-05-01
Guoyuan Lin, Danru Wang, Yuyu Bie, Min Lei.  2014.  MTBAC: A mutual trust based access control model in Cloud computing. Communications, China. 11:154-162.

As a new computing mode, cloud computing can provide users with virtualized and scalable web services, which faced with serious security challenges, however. Access control is one of the most important measures to ensure the security of cloud computing. But applying traditional access control model into the Cloud directly could not solve the uncertainty and vulnerability caused by the open conditions of cloud computing. In cloud computing environment, only when the security and reliability of both interaction parties are ensured, data security can be effectively guaranteed during interactions between users and the Cloud. Therefore, building a mutual trust relationship between users and cloud platform is the key to implement new kinds of access control method in cloud computing environment. Combining with Trust Management(TM), a mutual trust based access control (MTBAC) model is proposed in this paper. MTBAC model take both user's behavior trust and cloud services node's credibility into consideration. Trust relationships between users and cloud service nodes are established by mutual trust mechanism. Security problems of access control are solved by implementing MTBAC model into cloud computing environment. Simulation experiments show that MTBAC model can guarantee the interaction between users and cloud service nodes.