Visible to the public Biblio

Filters: Keyword is IoT Security 2018  [Clear All Filters]
2019-05-20
Prokofiev, A. O., Smirnova, Y. S., Surov, V. A..  2018.  A method to detect Internet of Things botnets. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :105–108.

The main security problems, typical for the Internet of Things (IoT), as well as the purpose of gaining unauthorized access to the IoT, are considered in this paper. Common characteristics of the most widespread botnets are provided. A method to detect compromised IoT devices included into a botnet is proposed. The method is based on a model of logistic regression. The article describes a developed model of logistic regression which allows to estimate the probability that a device initiating a connection is running a bot. A list of network protocols, used to gain unauthorized access to a device and to receive instructions from common and control (C&C) server, is provided too.

Atlam, Hany F., Walters, Robert J., Wills, Gary B..  2018.  Internet of Nano Things: Security Issues and Applications. Proceedings of the 2018 2Nd International Conference on Cloud and Big Data Computing. :71–77.
Nanotechnology provides new solutions for numerous applications that have a significant effect on almost every aspect of our community including health monitoring, smart cities, military, agriculture, and industry. The interconnection of nanoscale devices with existing communication networks over the Internet defines a novel networking paradigm called the Internet of Nano-Things (IoNT). The IoNT involves a large number of nanosensors that used to provide more precise and detailed information about a particular object to enable a better understanding of object behaviour. In this paper, we investigate the challenges and opportunities of the IoNT system in various applications. An overview of the IoNT is first introduced. This is followed by a discussion of the network architecture of the IoNT and various applications that benefit from integrating IoT with nanotechnology. In the end, since security is considered to be one of the main issues of the IoNT system, we provide an in-depth discussion on security goals, attack vectors and security challenges of the IoNT system.
Taherkordi, Amir, Herrmann, Peter.  2018.  Pervasive Smart Contracts for Blockchains in IoT Systems. Proceedings of the 2018 International Conference on Blockchain Technology and Application. :6–11.

Thanks to its decentralized structure and immutability, blockchain technology has the potential to address relevant security and privacy challenges in the Internet of Things (IoT). In particular, by hosting and executing smart contracts, blockchain allows secure, flexible, and traceable message communication between IoT devices. The unique characteristics of IoT systems, such as heterogeneity and pervasiveness, however, pose challenges in designing smart contracts for such systems. In this paper, we study these challenges and propose a design approach for smart contracts used in IoT systems. The main goal of our design model is to enhance the development of IoT smart contracts based on the inherent pervasive attributes of IoT systems. In particular, the design model allows the smart contracts to encapsulate functionalities such as contractlevel communication between IoT devices, access to data-sources within contracts, and interoperability of heterogeneous IoT smart contracts. The essence of our approach is structuring the design of IoT smart contracts as self-contained software services, inspired by the microservice architecture model. The flexibility, scalability and modularity of this model make it an efficient approach for developing pervasive IoT smart contracts.

Morris, Alexis, Lessio, Nadine.  2018.  Deriving Privacy and Security Considerations for CORE: An Indoor IoT Adaptive Context Environment. Proceedings of the 2Nd International Workshop on Multimedia Privacy and Security. :2–11.
The internet-of-things (IoT) consists of embedded devices and their networks of communication as they form decentralized frameworks of ubiquitous computing services. Within such decentralized systems the potential for malicious actors to impact the system is significant, with far-reaching consequences. Hence this work addresses the challenge of providing IoT systems engineers with a framework to elicit privacy and security design considerations, specifically for indoor adaptive smart environments. It introduces a new ambient intelligence indoor adaptive environment framework (CORE) which leverages multiple forms of data, and aims to elicit the privacy and security needs of this representative system. This contributes both a new adaptive IoT framework, but also an approach to systematically derive privacy and security design requirements via a combined and modified OCTAVE-Allegro and Privacy-by-Design methodology. This process also informs the future developments and evaluations of the CORE system, toward engineering more secure and private IoT systems.
Wang, Ge, Qian, Chen, Cai, Haofan, Han, Jinsong, Zhao, Jizhong.  2018.  Replay-resilient Authentication for IoT. Proceedings of the 10th on Wireless of the Students, by the Students, and for the Students Workshop. :3–5.

We provide the first solution to an important question, "how a physical-layer RFID authentication method can defend against signal replay attacks". It was believed that if the attacker has a device that can replay the exact same reply signal of a legitimate tag, any physical-layer authentication method will fail. This paper presents Hu-Fu, the first physical layer RFID authentication protocol that is resilient to the major attacks including tag counterfeiting, signal replay, signal compensation, and brute-force feature reply. Hu-Fu is built on two fundamental ideas, namely inductive coupling of two tags and signal randomization. Hu-Fu does not require any hardware or protocol modification on COTS passive tags and can be implemented with COTS devices. We implement a prototype of Hu-Fu and demonstrate that it is accurate and robust to device diversity and environmental changes.

Chang, Kai Chih, Zaeem, Razieh Nokhbeh, Barber, K. Suzanne.  2018.  Enhancing and Evaluating Identity Privacy and Authentication Strength by Utilizing the Identity Ecosystem. Proceedings of the 2018 Workshop on Privacy in the Electronic Society. :114–120.
This paper presents a novel research model of identity and the use of this model to answer some interesting research questions. Information travels in the cyber world, not only bringing us convenience and prosperity but also jeopardy. Protecting this information has been a commonly discussed issue in recent years. One type of this information is Personally Identifiable Information (PII), often used to perform personal authentication. People often give PIIs to organizations, e.g., when applying for a new job or filling out a new application on a website. While the use of such PII might be necessary for authentication, giving PII increases the risk of its exposure to criminals. We introduce two innovative approaches based on our model of identity to help evaluate and find an optimal set of PIIs that satisfy authentication purposes but minimize risk of exposure. Our model paves the way for more informed selection of PIIs by organizations that collect them as well as by users who offer PIIs to these organizations.
Caminha, J., Perkusich, A., Perkusich, M..  2018.  A smart middleware to detect on-off trust attacks in the Internet of Things. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1–2.

Security is a key concern in Internet of Things (IoT) designs. In a heterogeneous and complex environment, service providers and service requesters must trust each other. On-off attack is a sophisticated trust threat in which a malicious device can perform good and bad services randomly to avoid being rated as a low trust node. Some countermeasures demands prior level of trust knowing and time to classify a node behavior. In this paper, we introduce a Smart Middleware that automatically assesses the IoT resources trust, evaluating service providers attributes to protect against On-off attacks.

Chu, G., Lisitsa, A..  2018.  Penetration Testing for Internet of Things and Its Automation. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1479–1484.

The Internet of Things (IoT) is an emerging technology, an extension of the traditional Internet which make everything is connected each other based on Radio Frequency Identification (RFID), Sensor, GPS or Machine to Machine technologies, etc. The security issues surrounding IoT have been of detrimental impact to its development and has consequently attracted research interest. However, there are very few approaches which assess the security of IoT from the perspective of an attacker. Penetration testing is widely used to evaluate traditional internet or systems security to date and it normally spends numerous cost and time. In this paper, we analyze the security problems of IoT and propose a penetration testing approach and its automation based on belief-desire-intention (BDI) model to evaluate the security of the IoT.

Terkawi, A., Innab, N., al-Amri, S., Al-Amri, A..  2018.  Internet of Things (IoT) Increasing the Necessity to Adopt Specific Type of Access Control Technique. 2018 21st Saudi Computer Society National Computer Conference (NCC). :1–5.

The Internet of Things (IoT) is one of the emerging technologies that has seized the attention of researchers, the reason behind that was the IoT expected to be applied in our daily life in the near future and human will be wholly dependent on this technology for comfort and easy life style. Internet of things is the interconnection of internet enabled things or devices to connect with each other and to humans in order to achieve some goals or the ability of everyday objects to connect to the Internet and to send and receive data. However, the Internet of Things (IoT) raises significant challenges that could stand in the way of realizing its potential benefits. This paper discusses access control area as one of the most crucial aspect of security and privacy in IoT and proposing a new way of access control that would decide who is allowed to access what and who is not to the IoT subjects and sensors.

Celia, L., Cungang, Y..  2018.  (WIP) Authenticated Key Management Protocols for Internet of Things. 2018 IEEE International Congress on Internet of Things (ICIOT). :126–129.

The Internet of Things (IoT) provides transparent and seamless incorporation of heterogeneous and different end systems. It has been widely used in many applications such as smart homes. However, people may resist the IOT as long as there is no public confidence that it will not cause any serious threats to their privacy. Effective secure key management for things authentication is the prerequisite of security operations. In this paper, we present an interactive key management protocol and a non-interactive key management protocol to minimize the communication cost of the things. The security analysis show that the proposed schemes are resilient to various types of attacks.

Blue, Logan, Vargas, Luis, Traynor, Patrick.  2018.  Hello, Is It Me You'Re Looking For?: Differentiating Between Human and Electronic Speakers for Voice Interface Security Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :123–133.
Voice interfaces are increasingly becoming integrated into a variety of Internet of Things (IoT) devices. Such systems can dramatically simplify interactions between users and devices with limited displays. Unfortunately voice interfaces also create new opportunities for exploitation. Specifically any sound-emitting device within range of the system implementing the voice interface (e.g., a smart television, an Internet-connected appliance, etc) can potentially cause these systems to perform operations against the desires of their owners (e.g., unlock doors, make unauthorized purchases, etc). We address this problem by developing a technique to recognize fundamental differences in audio created by humans and electronic speakers. We identify sub-bass over-excitation, or the presence of significant low frequency signals that are outside of the range of human voices but inherent to the design of modern speakers, as a strong differentiator between these two sources. After identifying this phenomenon, we demonstrate its use in preventing adversarial requests, replayed audio, and hidden commands with a 100%/1.72% TPR/FPR in quiet environments. In so doing, we demonstrate that commands injected via nearby audio devices can be effectively removed by voice interfaces.
Schuster, Roei, Shmatikov, Vitaly, Tromer, Eran.  2018.  Situational Access Control in the Internet of Things. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1056–1073.

Access control in the Internet of Things (IoT) often depends on a situation — for example, "the user is at home” — that can only be tracked using multiple devices. In contrast to the (well-studied) smartphone frameworks, enforcement of situational constraints in the IoT poses new challenges because access control is fundamentally decentralized. It takes place in multiple independent frameworks, subjects are often external to the enforcement system, and situation tracking requires cross-framework interaction and permissioning. Existing IoT frameworks entangle access-control enforcement and situation tracking. This results in overprivileged, redundant, inconsistent, and inflexible implementations. We design and implement a new approach to IoT access control. Our key innovation is to introduce "environmental situation oracles” (ESOs) as first-class objects in the IoT ecosystem. An ESO encapsulates the implementation of how a situation is sensed, inferred, or actuated. IoT access-control frameworks can use ESOs to enforce situational constraints, but ESOs and frameworks remain oblivious to each other's implementation details. A single ESO can be used by multiple access-control frameworks across the ecosystem. This reduces inefficiency, supports consistent enforcement of common policies, and — because ESOs encapsulate sensitive device-access rights — reduces overprivileging. ESOs can be deployed at any layer of the IoT software stack where access control is applied. We implemented prototype ESOs for the IoT resource layer, based on the IoTivity framework, and for the IoT Web services, based on the Passport middleware.