Visible to the public Biblio

Filters: Keyword is MANET Attack Detection  [Clear All Filters]
Conference Paper
Shakeel, M., Saeed, K., Ahmed, S., Nawaz, A., Jan, S., Najam, Z..  2020.  Analysis of Different Black Hole Attack Detection Mechanisms for AODV Routing Protocol in Robotics Mobile AdHoc Networks. 2020 Advances in Science and Engineering Technology International Conferences (ASET). :1–6.
Robotics Mobile Ad-hoc Networks (MANETs) are comprised of stations having mobility with no central authority and control. The stations having mobility in Robotics MANETs work as a host as well as a router. Due to the unique characteristics of Robotics MANETs such type of networks are vulnerable to different security attacks. Ad-hoc On-demand Distance Vector (AODV) is a routing protocol that belongs to the reactive category of routing protocols in Robotics MANETs. However, it is more vulnerable to the Black hole (BH) attack that is one of the most common attacks in the Robotics MANETs environment. In this attack during the route disclosure procedure a malicious station promotes itself as a most brief path to the destination as well as after that drop every one of the data gotten by the malicious station. Meanwhile the packets don't reach to its ideal goal, the BH attack turns out to be progressively escalated when a heap of malicious stations attack the system as a gathering. This research analyzed different BH finding as well as removal mechanisms for AODV routing protocol.
Mintu, Singh, Gursharan, Malhi, Simarjit Singh, Mahajan, Makul, Batra, Salil, Bath, Ranbir Singh.  2019.  Anatomization of Detection and Performance Measures Techniques for Flooding Attacks using Routing Protocols in MANETs. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :160—167.
Mobile ad-hoc network (MANETS) is generally appropriate in different territories like military tactical network, educational, home and entertainment and emergency operations etc. The MANETSs are simply the disintegration and designing kind of system in this portable hubs coming up and out the system whenever. Because of decentralized creation of the network, security, routing and Standard of service are the three noteworthy issues. MANETSs are helpless against security attack in light of the decentralized validation. The mobile hubs can enter or out the system and at some point malicious hubs enter the system, which are capable to trigger different dynamic and inactive attack. The flooding attack is the dynamic sort of attack in which malicious hubs transfers flooding packets on the medium. Because of this, medium gets over-burden and packets drop may happen inside the system. This decreases the throughput and increased packet loss. In this paper we illustrated different techniques and proposed various methods responsible for flooding attack. Our commitment in this paper is that we have investigated various flooding attacks in MANETs, their detection techniques with performance measure parameters.
Pandey, S., Singh, V..  2020.  Blackhole Attack Detection Using Machine Learning Approach on MANET. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :797–802.

Mobile Ad-hoc Network (MANET) consists of different configurations, where it deals with the dynamic nature of its creation and also it is a self-configurable type of a network. The primary task in this type of networks is to develop a mechanism for routing that gives a high QoS parameter because of the nature of ad-hoc network. The Ad-hoc-on-Demand Distance Vector (AODV) used here is the on-demand routing mechanism for the computation of the trust. The proposed approach uses the Artificial neural network (ANN) and the Support Vector Machine (SVM) for the discovery of the black hole attacks in the network. The results are carried out between the black hole AODV and the security mechanism provided by us as the Secure AODV (SAODV). The results were tested on different number of nodes, at last, it has been experimented for 100 nodes which provide an improvement in energy consumption of 54.72%, the throughput is 88.68kbps, packet delivery ratio is 92.91% and the E to E delay is of about 37.27ms.

Gopalakrishnan, S., Rajesh, A..  2019.  Cluster based Intrusion Detection System for Mobile Ad-hoc Network. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM). 1:11–15.

Mobile Ad-hoc network is decentralized and composed of various individual devices for communicating with each other. Its distributed nature and infrastructure deficiency are the way for various attacks in the network. On implementing Intrusion detection systems (IDS) in ad-hoc node securities were enhanced by means of auditing and monitoring process. This system is composed with clustering protocols which are highly effective in finding the intrusions with minimal computation cost on power and overhead. The existing protocols were linked with the routes, which are not prominent in detecting intrusions. The poor route structure and route renewal affect the cluster hardly. By which the cluster are unstable and results in maximization processing along with network traffics. Generally, the ad hoc networks are structured with battery and rely on power limitation. It needs an active monitoring node for detecting and responding quickly against the intrusions. It can be attained only if the clusters are strong with extensive sustaining capability. Whenever the cluster changes the routes also change and the prominent processing of achieving intrusion detection will not be possible. This raises the need of enhanced clustering algorithm which solved these drawbacks and ensures the network securities in all manner. We proposed CBIDP (cluster based Intrusion detection planning) an effective clustering algorithm which is ahead of the existing routing protocol. It is persistently irrespective of routes which monitor the intrusion perfectly. This simplified clustering methodology achieves high detecting rates on intrusion with low processing as well as memory overhead. As it is irrespective of the routes, it also overcomes the other drawbacks like traffics, connections and node mobility on the network. The individual nodes in the network are not operative on finding the intrusion or malicious node, it can be achieved by collaborating the clustering with the system.

Sonekar, S. V., Pal, M., Tote, M., Sawwashere, S., Zunke, S..  2020.  Computation Termination and Malicious Node Detection using Finite State Machine in Mobile Adhoc Networks. 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom). :156—161.

The wireless technology has knocked the door of tremendous usage and popularity in the last few years along with a high growth rate for new applications in the networking domain. Mobile Ad hoc Networks (MANETs) is solitary most appealing, alluring and challenging field where in the participating nodes do not require any active, existing and centralized system or rigid infrastructure for execution purpose and thus nodes have the moving capability on arbitrary basis. Radio range nodes directly communicate with each other through the wireless links whereas outside range nodes uses relay principle for communication. Though it is a rigid infrastructure less environment and has high growth rate but security is a major concern and becomes vital part of providing hostile free environment for communication. The MANET imposes several prominent challenges such as limited energy reserve, resource constraints, highly dynamic topology, sharing of wireless medium, energy inefficiency, recharging of the batteries etc. These challenges bound to make MANET more susceptible, more close to attacks and weak unlike the wired line networks. Theresearch paperismainly focused on two aspects, one is computation termination of cluster head algorithm and another is use of finite state machine for attacks identification.

Hossain, Sazzat, Hussain, Md. Sazzad, Ema, Romana Rahman, Dutta, Songita, Sarkar, Suborna, Islam, Tajul.  2019.  Detecting Black hole attack by selecting appropriate routes for authentic message passing using SHA-3 and Diffie-Hellman algorithm in AODV and AOMDV routing protocols in MANET. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
Ad hoc network is sensitive to attacks because it has temporary nature and frequently recognized insecure environment. Both Ad hoc On-demand Distance Vector (AODV) and Ad hoc On-demand Multipath Distance vector (AOMDV) routing protocols have the strategy to take help from Wireless and mobile ad hoc networks. A mobile ad hoc network (MANET) is recognized as an useful internet protocol and where the mobile nodes are self-configuring and self-organizing in character. This research paper has focused on the detection and influence of black hole attack on the execution of AODV and AOMDV routing protocols and has also evaluated the performance of those two on-demand routing protocols in MANETs. AODV has the characteristics for discovering a single path in single route discovery and AOMDV has the characteristics for discovering multiple paths in single route discovery. Here a proposed method for both AODV and AOMDV routing protocol, has been applied for the detection of the black hole attack, which is the merge of both SHA-3 and Diffie-Hellman algorithm. This merge technique has been applied to detect black hole attack in MANET. This technique has been applied to measure the performance matrices for both AODV and AOMDV and those performance matrices are Average Throughput, Average End to End delay and Normalized Routing Load. Both AODV and AOMDV routing protocol have been compared with each other to show that under black hole attack, AOMDV protocol always has better execution than AODV protocol. Here, NS-2.35 has been used as the Network Simulator tool for the simulation of these particular three types of performance metrics stated above.
Sharma, K., Bhadauria, S..  2020.  Detection and Prevention of Black Hole Attack in SUPERMAN. 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–6.
MANETs are wireless networks, providing properties such as self-configuration, mobility, and flexibility to the network, which make them a popular and widely used technique. As the usage and popularity of the networks increases, security becomes the most important factor to be concerned. For the sake of security, several protocols and methodologies have been developed for the networks. Along with the increase in security mechanisms, the number of attacks and attackers also increases and hence the threat to the network and secure communication within it increases as well. Some of the attacks have been resolved by the proposed methodologies but some are still a severe threat to the framework, one such attack is Black Hole Attack. The proposed work integrates the SUPERMAN (Security Using Pre-Existing Routing for Mobile Ad-hoc Networks) framework with appropriate methodology to detect and prevent the network from the Black Hole Attack. The mechanism is based on the AODV (Ad-hoc On-demand Distance Vector) routing protocol. In the methodology, the source node uses two network routes, from the source to the destination, one for sending the data packet and another for observing the intermediate nodes of the initial route. If any node is found to be a Black Hole node, then the route is dropped and the node is added to the Black Hole list and a new route to send the data packet to the destination is discovered.
Khan, Asif Uddin, Puree, Rajesh, Mohanta, Bhabendu Kumar, Chedup, Sangay.  2021.  Detection and Prevention of Blackhole Attack in AODV of MANET. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–7.
One of the most dynamic network is the Mobile Adhoc (MANET) network. It is a list of numerous mobile nodes. Dynamic topology and lack of centralization are the basic characteristics of MANET. MANETs are prone to many attacks due to these characteristics. One of the attacks carried out on the network layer is the blackhole attack. In a black-hole attack, by sending false routing information, malicious nodes interrupt data transmission. There are two kinds of attacks involving a black-hole, single and co-operative. There is one malicious node in a single black-hole attack that can act as the node with the highest sequence number. The node source would follow the direction of the malicious node by taking the right direction. There is more than one malicious node in the collaborative black-hole attack. One node receives a packet and sends it to another malicious node in this attack. It is very difficult to detect and avoid black-hole attacks. Many researchers have invented black-hole attack detection and prevention systems. In this paper, We find a problem in the existing solution, in which validity bit is used. This paper also provides a comparative study of many scholars. The source node is used to detect and prevent black hole attacks by using a binary partition clustering based algorithm. We compared the performance of the proposed solution with existing solution and shown that our solution outperforms the existing one.
Taranum, Fahmina, Sarvat, Ayesha, Ali, Nooria, Siddiqui, Shamekh.  2020.  Detection and Prevention of Blackhole Node. 2020 4th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1–7.
Mobile Adhoc networks (MANETs) comprises of mobile devices or nodes that are connected wirelessly and have no infrastructure. Detecting malicious activities in MANETs is a challenging task as they are vulnerable to attacks where the performance of the entire network degrades. Hence it is necessary to provide security to the network so that the nodes are prone to attack. Selecting a good routing protocol in MANET is also important as frequent change of topology causes the route reply to not arrive at the source node. In this paper, R-AODV (Reverse Adhoc On-Demand Distance Vector) protocol along with ECC (Elliptic Key Cryptography) algorithm is designed and implemented to detect and to prevent the malicious node and to secure data transmission against blackhole attack. The main objective is to keep the data packets secure. ECC provides a smaller key size compared to other public-key encryption and eliminates the requirement of pre-distributed keys also makes the path more secure against blackhole attacks in a MANET. The performance of this proposed system is simulated by using the NS-2.35 network simulator. Simulation results show that the proposed protocol provides good experimental results on various metrics like throughput, end-to-end delay, and PDR. Analysis of the results points to an improvement in the overall network performance.
Nurwarsito, Heru, Iskandar, Chairul.  2021.  Detection Jellyfish Attacks Against Dymo Routing Protocol on Manet Using Delay Per-Hop Indicator (Delphi) Method. 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT). :385–390.
Mobile Ad Hoc Network (MANET) is one of the types of Ad-hoc Network which is comprised of wireless in a network. The main problem in this research is the vulnerability of the protocol routing Dymo against jellyfish attack, so it needs detection from a jellyfish attack. This research implements the DELPHI method to detect jellyfish attacks on a DYMO protocol which has better performance because the Delay Per-Hop Indicator (DELPHI) gathers the amount of hop and information delay from the disjoint path and calculates the delays per-hop as an indicator of a jellyfish attack. The evaluation results indicate an increase in the end-to-end delay average, start from 112.59s in 10 nodes increased to 143.732s in 30 nodes but reduced to 84,2142s in 50 nodes. But when the DYMO routing did not experience any jellyfish attacks both the delivery ratio and throughput are decreased. The delivery ratio, where decreased from 10.09% to 8.19% in 10 nodes, decreased from 20.35% to 16.85%, and decreased from 93.5644% to 82.825% in 50 nodes. As for the throughput, for 10 nodes decreased from 76.7677kbps to 68.689kbps, for 30 nodes decreased from 100kbps to 83.5821kbps and for 50 nodes decreased from 18.94kbps to 15.94kbps.
Thapar, Shruti, Sharma, Sudhir Kumar.  2020.  Direct Trust-based Detection Algorithm for Preventing Jellyfish Attack in MANET. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA). :749–753.
The dynamic and adaptable characteristics of mobile ad hoc networks have made it a significant field for deploying various applications in wireless sensor networks. Increasing popularity of the portable devices is the main reason for the development of mobile ad hoc networks. Furthermore, the network does not require a fixed architecture and it is easy to deploy. This type of network is highly vulnerable to cyber-attacks as the nodes communicate with each other through a Wireless medium. The most critical attack in ad hoc network is jellyfish attack. In this research we have proposed a Direct Trust-based Detection Algorithm to detect and prevent jellyfish attack in MANET.
Kaur, Jasleen, Singh, Tejpreet, Lakhwani, Kamlesh.  2019.  An Enhanced Approach for Attack Detection in VANETs Using Adaptive Neuro-Fuzzy System. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :191—197.
Vehicular Ad-hoc Networks (VANETs) are generally acknowledged as an extraordinary sort of Mobile Ad hoc Network (MANET). VANETs have seen enormous development in a decade ago, giving a tremendous scope of employments in both military and in addition non-military personnel exercises. The temporary network in the vehicles can likewise build the driver's capability on the road. In this paper, an effective information dispersal approach is proposed which enhances the vehicle-to-vehicle availability as well as enhances the QoS between the source and the goal. The viability of the proposed approach is shown with regards to the noteworthy gets accomplished in the parameters in particular, end to end delay, packet drop ratio, average download delay and throughput in comparison with the existing approaches.
Alsumayt, A., Haggerty, J., Lotfi, A..  2018.  Evaluation of Detection Method to Mitigate DoS Attacks in MANETs. 2018 1st International Conference on Computer Applications Information Security (ICCAIS). :1–5.

A Mobile ad hoc Network (MANET) is a self-configure, dynamic, and non-fixed infrastructure that consists of many nodes. These nodes communicate with each other without an administrative point. However, due to its nature MANET becomes prone to many attacks such as DoS attacks. DoS attack is a severe as it prevents legitimate users from accessing to their authorised services. Monitoring, Detection, and rehabilitation (MrDR) method is proposed to detect DoS attacks. MrDR method is based on calculating different trust values as nodes can be trusted or not. In this paper, we evaluate the MrDR method which detect DoS attacks in MANET and compare it with existing method Trust Enhanced Anonymous on-demand routing Protocol (TEAP) which is also based on trust concept. We consider two factors to compare the performance of the proposed method to TEAP method: packet delivery ratio and network overhead. The results confirm that the MrDR method performs better in network performance compared to TEAP method.

Rmayti, M., Begriche, Y., Khatoun, R., Khoukhi, L., Mammeri, A..  2018.  Graph-based wormhole attack detection in mobile ad hoc networks (MANETs). 2018 Fourth International Conference on Mobile and Secure Services (MobiSecServ). :1–6.

A Mobile ad hoc network (MANET) is a set of nodes that communicate together in a cooperative way using the wireless medium, and without any central administration. Due to its inherent open nature and the lack of infrastructure, security is a complicated issue compared to other networks. That is, these networks are vulnerable to a a wide range of attacks at different network layers. At the network level, malicious nodes can perform several attacks ranging from passive eavesdropping to active interfering. Wormhole is an example of severe attack that has attracted much attention recently. It involves the redirection of traffic between two end-nodes through a Wormhole tunnel, and manipulates the routing algorithm to give illusion that nodes located far from each other are neighbors. To handle with this issue, we propose a novel detection model to allow a node to check whether a presumed shortest path contains a Wormhole tunnel or not. Our approach is based on the fact that the Wormhole tunnel reduces significantly the length of the paths passing through it.

Ankome, Teresia, Lusilao Zodi, Guy-Alain.  2021.  Hierarchical Cooperative Intrusion Detection Method for MANETs (HCIDM). 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1–7.
In the recent years, mobile ad hoc wireless networks (MANETs) have experienced a tremendous rise in popularity and usage due to their flexibility and ability to provide connectivity from anywhere at any time. In general, MANETs provide mobile communication to participating nodes in situation where nodes do not need access to an existing network infrastructure. MANETs have a network topology that changes over time due to lack of infrastructure and mobility of nodes. Detection of a malicious node in MANETs is hard to achieve due to the dynamic nature of the relationships between moving node and the nature of the wireless channel. Most traditional Intrusion Detection System (IDS) are designed to operate in a centralized manner; and do not operate properly in MANET because data in MANETs is distributed in different network devices. In this paper, we present an Hierarchical Cooperative Intrusion Detection Method (HCIDM) to secure packets routing in MANETs. HCIDM is a distributed intrusion detection mechanism that uses collaboration between nodes to detect active attacks against the routing table of a mobile ad hoc network. HCIDM reduces the effectiveness of the attack by informing other nodes about the existence of a malicious node to keep the performance of the network within an acceptable level. The novelty of the mechanism lies in the way the responsibility to protect the networks is distributed among nodes, the trust level is computed and the information about the presence of a malicious is communicated to potential victim. HCIDM is coded using the Network Simulator (NS-2) in an ad hoc on demand distance vector enable MANET during a black hole attack. It is found that the HCIDM works efficiently in comparison with an existing Collaborative Clustering Intrusion Detection Mechanism (CCIDM), in terms of delivery ratio, delay and throughput.
Naqvi, Ila, Chaudhary, Alka, Rana, Ajay.  2021.  Intrusion Detection in VANETs. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–5.
Vehicular Ad hoc Networks commonly abbreviated as VANETs, are an important component of MANET. VANET refers to the group of vehicles that are interlinked to one another through wireless network. Along with technology, comes the threats. Like other wireless networks, VANETs also are vulnerable to various security threats. Security in VANETs is a major issue that attracted many researchers and academicians. One small security breach can cause a big damage in case of VANETs as in this case human lives are involved. Intrusion Detection Systems (IDS) are employed in VANETs in order to detect and identify any malicious activity in the network. The IDS works by analysing the network and detecting any intrusions tried or made in the network so that proper steps could be taken timely to prevent damage from such activities. This paper reviews Intrusion Detection systems, classification of IDS based on various factors and then the architecture of IDS. We then reviewed some of the recent and important intrusion detection research works and then compared them with one another.
Zalte, S. S., Ghorpade, V. R..  2018.  Intrusion Detection System for MANET. 2018 3rd International Conference for Convergence in Technology (I2CT). :1–4.

In Mobile Ad-hoc Network (MANET), we cannot predict the clear picture of the topology of a node because of its varying nature. Without notice participation and departure of nodes results in lack of trust relationship between nodes. In such circumstances, there is no guarantee that path between two nodes would be secure or free of malicious nodes. The presence of single malicious node could lead repeatedly compromised node. After providing security to route and data packets still, there is a need for the implementation of defense mechanism that is intrusion detection system(IDS) against compromised nodes. In this paper, we have implemented IDS, which defend against some routing attacks like the black hole and gray hole successfully. After measuring performance we get marginally increased Packet delivery ratio and Throughput.

Li, T., Ma, J., Pei, Q., Shen, Y., Sun, C..  2018.  Log-based Anomalies Detection of MANETs Routing with Reasoning and Verification. 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). :240–246.

Routing security plays an important role in Mobile Ad hoc Networks (MANETs). Despite many attempts to improve its security, the routing procedure of MANETs remains vulnerable to attacks. Existing approaches offer support for detecting attacks or debugging in different routing phases, but many of them have not considered the privacy of the nodes during the anomalies detection, which depend on the central control program or a third party to supervise the whole network. In this paper, we present an approach called LAD which uses the raw logs of routers to construct control a flow graph and find the existing communication rules in MANETs. With the reasoning rules, LAD can detect both active and passive attacks launched during the routing phase. LAD can also protect the privacy of the nodes in the verification phase with the specific Merkle hash tree. Without deploying any special nodes to assist the verification, LAD can detect multiple malicious nodes by itself. To show that our approach can be used to guarantee the security of the MANETs, we deploy our experiment in NS3 as well as the practical router environment. LAD can improve the accuracy rate from 2.28% to 29.22%. The results show that LAD performs limited time and memory usages, high detection and low false positives.

Abdel-Fattah, Farhan, AlTamimi, Fadel, Farhan, Khalid A..  2021.  Machine Learning and Data Mining in Cybersecurty. 2021 International Conference on Information Technology (ICIT). :952–956.
A wireless technology Mobile Ad hoc Network (MANET) that connects a group of mobile devices such as phones, laptops, and tablets suffers from critical security problems, so the traditional defense mechanism Intrusion Detection System (IDS) techniques are not sufficient to safeguard and protect MANET from malicious actions performed by intruders. Due to the MANET dynamic decentralized structure, distributed architecture, and rapid growing of MANET over years, vulnerable MANET does not need to change its infrastructure rather than using intelligent and advance methods to secure them and prevent intrusions. This paper focuses essentially on machine learning methodologies and algorithms to solve the shortage of the first line defense IDS to overcome the security issues MANET experience. Threads such as black hole, routing loops, network partition, selfishness, sleep deprivation, and denial of service (DoS), may be easily classified and recognized using machine learning methodologies and algorithms. Also, machine learning methodologies and algorithms help find ways to reduce and solve mischievous and harmful attacks against intimidation and prying. The paper describes few machine learning algorithms in detail such as Neural Networks, Support vector machine (SVM) algorithm and K-nearest neighbors, and how these methodologies help MANET to resolve their security problems.
Umar, M., Sabo, A., Tata, A. A..  2018.  Modified Cooperative Bait Detection Scheme for Detecting and Preventing Cooperative Blackhole and Eavesdropping Attacks in MANET. 2018 International Conference on Networking and Network Applications (NaNA). :121–126.

Mobile ad-hoc network (MANET) is a system of wireless mobile nodes that are dynamically self-organized in arbitrary and temporary topologies, that have received increasing interest due to their potential applicability to numerous applications. The deployment of such networks however poses several security challenging issues, due to their lack of fixed communication infrastructure, centralized administration, nodes mobility and dynamic topological changes, which make it susceptible to passive and active attacks such as single and cooperative black hole, sinkhole and eavesdropping attacks. The mentioned attacks mainly disrupt data routing processes by giving false routing information or stealing secrete information by malicious nodes in MANET. Thus, finding safe routing path by avoiding malicious nodes is a genuine challenge. This paper aims at combining the existing cooperative bait detection scheme which uses the baiting procedure to bait malicious nodes into sending fake route reply and then using a reverse tracing operation to detect the malicious nodes, with an RSA encryption technique to encode data packet before transmitting it to the destination to prevent eavesdropper and other malicious nodes from unauthorized read and write on the data packet. The proposed work out performs the existing Cooperative Bait Detection Scheme (CBDS) in terms of packet delivery ratio, network throughput, end to end delay, and the routing overhead.

Vaseer, Gurveen.  2020.  Multi-Attack Detection Using Forensics and Neural Network Based Prevention for Secure MANETs. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
This paper presents Forensic methods for detection and prevention of multiple attacks along with neural networks like Denial-of-Service (DoS), probe, vampire, and User-to-Root (U2R) attacks, in a Mobile Ad hoc Network (MANET). We accomplish attacker(s) detection and prevention percentage upto 99% in varied node density scenarios 50/100/150.
Kumar, A., Aggarwal, A., Yadav, D..  2018.  A Multi-layered Outlier Detection Model for Resource Constraint Hierarchical MANET. 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–7.

For sharing resources using ad hoc communication MANET are quite effective and scalable medium. MANET is a distributed, decentralized, dynamic network with no fixed infrastructure, which are self- organized and self-managed. Achieving high security level is a major challenge in case of MANET. Layered architecture is one of the ways for handling security challenges, which enables collection and analysis of data from different security dimensions. This work proposes a novel multi-layered outlier detection algorithm using hierarchical similarity metric with hierarchical categorized data. Network performance with and without the presence of outlier is evaluated for different quality-of-service parameters like percentage of APDR and AT for small (100 to 200 nodes), medium (200 to 1000 nodes) and large (1000 to 3000 nodes) scale networks. For a network with and without outliers minimum improvements observed are 9.1 % and 0.61 % for APDR and AT respectively while the maximum improvements of 22.1 % and 104.1 %.

Khalifa, Marwa Mohammed, Ucan, Osman Nuri, Ali Alheeti, Khattab M..  2021.  New Intrusion Detection System to Protect MANET Networks Employing Machine Learning Techniques. 2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI). :1–6.
The Intrusion Detection System (IDS) is one of the technologies available to protect mobile ad hoc networks. The system monitors the network and detects intrusion from malicious nodes, aiming at passive (eavesdropping) or positive attack to disrupt the network. This paper proposes a new Intrusion detection system using three Machine Learning (ML) techniques. The ML techniques were Random Forest (RF), support vector machines (SVM), and Naïve Bayes(NB) were used to classify nodes in MANET. The data set was generated by the simulator network simulator-2 (NS-2). The routing protocol was used is Dynamic Source Routing (DSR). The type of IDS used is a Network Intrusion Detection System (NIDS). The dataset was pre-processed, then split into two subsets, 67% for training and 33% for testing employing Python Version 3.8.8. Obtaining good results for RF, SVM and NB when applied randomly selected features in the trial and error method from the dataset to improve the performance of the IDS and reduce time spent for training and testing. The system showed promising results, especially with RF, where the accuracy rate reached 100%.
As'adi, H., Keshavarz-Haddad, A., Jamshidi, A..  2018.  A New Statistical Method for Wormhole Attack Detection in MANETs. 2018 15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :1–6.

Mobile ad hoc networks (MANETs) are a set of mobile wireless nodes that can communicate without the need for an infrastructure. Features of MANETs have made them vulnerable to many security attacks including wormhole attack. In the past few years, different methods have been introduced for detecting, mitigating, and preventing wormhole attacks in MANETs. In this paper, we introduce a new decentralized scheme based on statistical metrics for detecting wormholes that employs “number of new neighbors” along with “number of neighbors” for each node as its parameters. The proposed scheme has considerably low detection delay and does not create any traffic overhead for routing protocols which include neighbor discovery mechanism. Also, it possesses reasonable processing power and memory usage. Our simulation results using NS3 simulator show that the proposed scheme performs well in terms of detection accuracy, false positive rate and mean detection delay.

Kumar, Sushil, Mann, Kulwinder Singh.  2019.  Prevention of DoS Attacks by Detection of Multiple Malicious Nodes in VANETs. 2019 International Conference on Automation, Computational and Technology Management (ICACTM). :89—94.

Vehicular Adhoc Network (VANET), a specialized form of MANET in which safety is the major concern as critical information related to driver's safety and assistance need to be disseminated between the vehicle nodes. The security of the nodes can be increased, if the network availability is increased. The availability of the network is decreased, if there is Denial of Service Attacks (DoS) in the network. In this paper, a packet detection algorithm for the prevention of DoS attacks is proposed. This algorithm will be able to detect the multiple malicious nodes in the network which are sending irrelevant packets to jam the network and that will eventually stop the network to send the safety messages. The proposed algorithm was simulated in NS-2 and the quantitative values of packet delivery ratio, packet loss ratio, network throughput proves that the proposed algorithm enhance the security of the network by detecting the DoS attack well in time.