Visible to the public Biblio

Filters: Keyword is fingerprint identification  [Clear All Filters]
2015-05-04
Severin, F., Baradarani, A., Taylor, J., Zhelnakov, S., Maev, R..  2014.  Auto-adjustment of image produced by multi-transducer ultrasonic system. Ultrasonics Symposium (IUS), 2014 IEEE International. :1944-1947.

Acoustic microscopy is characterized by relatively long scanning time, which is required for the motion of the transducer over the entire scanning area. This time may be reduced by using a multi-channel acoustical system which has several identical transducers arranged as an array and is mounted on a mechanical scanner so that each transducer scans only a fraction of the total area. The resulting image is formed as a combination of all acquired partial data sets. The mechanical instability of the scanner, as well as the difference in parameters of the individual transducers causes a misalignment of the image fractures. This distortion may be partially compensated for by the introduction of constant or dynamical signal leveling and data shift procedures. However, a reduction of the random instability component requires more advanced algorithms, including auto-adjustment of processing parameters. The described procedure was implemented into the prototype of an ultrasonic fingerprint reading system. The specialized cylindrical scanner provides a helical spiral lens trajectory which eliminates repeatable acceleration, reduces vibration and allows constant data flow on maximal rate. It is equipped with an array of four spherically focused 50 MHz acoustic lenses operating in pulse-echo mode. Each transducer is connected to a separate channel including pulser, receiver and digitizer. The output 3D data volume contains interlaced B-scans coming from each channel. Afterward, data processing includes pre-determined procedures of constant layer shift in order to compensate for the transducer displacement, phase shift and amplitude leveling for compensation of variation in transducer characteristics. Analysis of statistical parameters of individual scans allows adaptive eliminating of the axial misalignment and mechanical vibrations. Further 2D correlation of overlapping partial C-scans will realize an interpolative adjustment which essentially improves the output image. Implementation of this adaptive algorithm into a data processing sequence allows us to significantly reduce misreading due to hardware noise and finger motion during scanning. The system provides a high quality acoustic image of the fingerprint including different levels of information: fingerprint pattern, sweat porous locations, internal dermis structures. These additional features can effectively facilitate fingerprint based identification. The developed principles and algorithm implementations allow improved quality, stability and reliability of acoustical data obtained with the mechanical scanner, accommodating several transducers. General principles developed during this work can be applied to other configurations of advanced ultrasonic systems designed for various biomedical and NDE applications. The data processing algorithm, developed for a specific biometric task, can be adapted for the compensation of mechanical imperfections of the other devices.

Moussallam, M., Daudet, L..  2014.  A general framework for dictionary based audio fingerprinting. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :3077-3081.

Fingerprint-based Audio recognition system must address concurrent objectives. Indeed, fingerprints must be both robust to distortions and discriminative while their dimension must remain to allow fast comparison. This paper proposes to restate these objectives as a penalized sparse representation problem. On top of this dictionary-based approach, we propose a structured sparsity model in the form of a probabilistic distribution for the sparse support. A practical suboptimal greedy algorithm is then presented and evaluated on robustness and recognition tasks. We show that some existing methods can be seen as particular cases of this algorithm and that the general framework allows to reach other points of a Pareto-like continuum.

Zurek, E.E., Gamarra, A.M.R., Escorcia, G.J.R., Gutierrez, C., Bayona, H., Perez, R., Garcia, X..  2014.  Spectral analysis techniques for acoustic fingerprints recognition. Image, Signal Processing and Artificial Vision (STSIVA), 2014 XIX Symposium on. :1-5.

This article presents results of the recognition process of acoustic fingerprints from a noise source using spectral characteristics of the signal. Principal Components Analysis (PCA) is applied to reduce the dimensionality of extracted features and then a classifier is implemented using the method of the k-nearest neighbors (KNN) to identify the pattern of the audio signal. This classifier is compared with an Artificial Neural Network (ANN) implementation. It is necessary to implement a filtering system to the acquired signals for 60Hz noise reduction generated by imperfections in the acquisition system. The methods described in this paper were used for vessel recognition.

2015-05-01
Van Vaerenbergh, S., González, O., Vía, J., Santamaría, I..  2014.  Physical layer authentication based on channel response tracking using Gaussian processes. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :2410-2414.

Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.