Biblio
A novel physical layer authentication scheme is proposed in this paper by exploiting the time-varying carrier frequency offset (CFO) associated with each pair of wireless communications devices. In realistic scenarios, radio frequency oscillators in each transmitter-and-receiver pair always present device-dependent biases to the nominal oscillating frequency. The combination of these biases and mobility-induced Doppler shift, characterized as a time-varying CFO, can be used as a radiometric signature for wireless device authentication. In the proposed authentication scheme, the variable CFO values at different communication times are first estimated. Kalman filtering is then employed to predict the current value by tracking the past CFO variation, which is modeled as an autoregressive random process. To achieve the proposed authentication, the current CFO estimate is compared with the Kalman predicted CFO using hypothesis testing to determine whether the signal has followed a consistent CFO pattern. An adaptive CFO variation threshold is derived for device discrimination according to the signal-to-noise ratio and the Kalman prediction error. In addition, a software-defined radio (SDR) based prototype platform has been developed to validate the feasibility of using CFO for authentication. Simulation results further confirm the effectiveness of the proposed scheme in multipath fading channels.
Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.
Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.