Visible to the public Biblio

Filters: Keyword is deep learning approach  [Clear All Filters]
2021-01-11
Amrutha, C. V., Jyotsna, C., Amudha, J..  2020.  Deep Learning Approach for Suspicious Activity Detection from Surveillance Video. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :335—339.

Video Surveillance plays a pivotal role in today's world. The technologies have been advanced too much when artificial intelligence, machine learning and deep learning pitched into the system. Using above combinations, different systems are in place which helps to differentiate various suspicious behaviors from the live tracking of footages. The most unpredictable one is human behaviour and it is very difficult to find whether it is suspicious or normal. Deep learning approach is used to detect suspicious or normal activity in an academic environment, and which sends an alert message to the corresponding authority, in case of predicting a suspicious activity. Monitoring is often performed through consecutive frames which are extracted from the video. The entire framework is divided into two parts. In the first part, the features are computed from video frames and in second part, based on the obtained features classifier predict the class as suspicious or normal.

2020-11-02
Sharma, Sachin, Ghanshala, Kamal Kumar, Mohan, Seshadri.  2018.  A Security System Using Deep Learning Approach for Internet of Vehicles (IoV). 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :1—5.

The Internet of Vehicles (IoV) will connect not only mobile devices with vehicles, but it will also connect vehicles with each other, and with smart offices, buildings, homes, theaters, shopping malls, and cities. The IoV facilitates optimal and reliable communication services to connected vehicles in smart cities. The backbone of connected vehicles communication is the critical V2X infrastructures deployment. The spectrum utilization depends on the demand by the end users and the development of infrastructure that includes efficient automation techniques together with the Internet of Things (IoT). The infrastructure enables us to build smart environments for spectrum utilization, which we refer to as Smart Spectrum Utilization (SSU). This paper presents an integrated system consisting of SSU with IoV. However, the tasks of securing IoV and protecting it from cyber attacks present considerable challenges. This paper introduces an IoV security system using deep learning approach to develop secure applications and reliable services. Deep learning composed of unsupervised learning and supervised learning, could optimize the IoV security system. The deep learning methodology is applied to monitor security threats. Results from simulations show that the monitoring accuracy of the proposed security system is superior to that of the traditional system.

2019-06-10
Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D. B., Wang, Y., Iqbal, F..  2018.  Malware Classification with Deep Convolutional Neural Networks. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1-5.

In this paper, we propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses a serious security threat to financial institutions, businesses and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples so that their behavior can be analyzed. Machine learning approaches are becoming popular for classifying malware, however, most of the existing machine learning methods for malware classification use shallow learning algorithms (e.g. SVM). Recently, Convolutional Neural Networks (CNN), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Motivated by this success, we propose a CNN-based architecture to classify malware samples. We convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, Malimg and Microsoft malware, demonstrate that our method achieves better than the state-of-the-art performance. The proposed method achieves 98.52% and 99.97% accuracy on the Malimg and Microsoft datasets respectively.