Visible to the public Biblio

Filters: Keyword is Gated Recurrent Unit  [Clear All Filters]
2022-03-01
Meng, Qinglan, Pang, Xiyu, Zheng, Yanli, Jiang, Gangwu, Tian, Xin.  2021.  Development and Optimization of Software Defined Networking Anomaly Detection Architecture by GRU-CNN under Deep Learning. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :828–834.
Ensuring the network security, resists the malicious traffic attacks as much as possible, and ensuring the network security, the Gated Recurrent Unit (GRU) and Convolutional Neural Network (CNN) are combined. Then, a Software Defined Networking (SDN) anomaly detection architecture is built and continuously optimized to ensure network security as much as possible and enhance the reliability of the detection architecture. The results show that the proposed network architecture can greatly improve the accuracy of detection, and its performance will be different due to the different number of CNN layers. When the two-layer CNN structure is selected, its performance is the best among all algorithms. Especially, the accuracy of GRU- CNN-2 is 98.7%, which verifies that the proposed method is effective. Therefore, under deep learning, the utilization of GRU- CNN to explore and optimize the SDN anomaly detection is of great significance to ensure information transmission security in the future.
2020-09-11
Shu, Yujin, Xu, Yongjin.  2019.  End-to-End Captcha Recognition Using Deep CNN-RNN Network. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). :54—58.
With the development of the Internet, the captcha technology has also been widely used. Captcha technology is used to distinguish between humans and machines, namely Completely Automated Public Turing test to tell Computers and Humans Apart. In this paper, an end-to-end deep CNN-RNN network model is constructed by studying the captcha recognition technology, which realizes the recognition of 4-character text captcha. The CNN-RNN model first constructs a deep residual convolutional neural network based on the residual network structure to accurately extract the input captcha picture features. Then, through the constructed variant RNN network, that is, the two-layer GRU network, the deep internal features of the captcha are extracted, and finally, the output sequence is the 4-character captcha. The experiments results show that the end-to-end deep CNN-RNN network model has a good performance on different captcha datasets, achieving 99% accuracy. And experiment on the few samples dataset which only has 4000 training samples also shows an accuracy of 72.9 % and a certain generalization ability.
2019-06-10
Kim, C. H., Kabanga, E. K., Kang, S..  2018.  Classifying Malware Using Convolutional Gated Neural Network. 2018 20th International Conference on Advanced Communication Technology (ICACT). :40-44.

Malware or Malicious Software, are an important threat to information technology society. Deep Neural Network has been recently achieving a great performance for the tasks of malware detection and classification. In this paper, we propose a convolutional gated recurrent neural network model that is capable of classifying malware to their respective families. The model is applied to a set of malware divided into 9 different families and that have been proposed during the Microsoft Malware Classification Challenge in 2015. The model shows an accuracy of 92.6% on the available dataset.